Руководство по эксплуатации RIGOL

.

Цифровые осциллографы серии DS100075

О мерах безопасности

Во избежание получения травм, повреждения этого прибора или других приборов электрически связанных с ним, перед тем как приступить к работе внимательно ознакомьтесь с информацией о мерах безопасности.

Во избежание потенциальной опасности используйте прибор только как указано в данном руководстве.

Обслуживание И ремонт прибора должен осуществлять только квалифицированный специалист.

Во избежание возгорания и травм

Используйте специальный шнур питания. Используйте только шнур питания, предназначенный для Вашего осциллографа с вилкой применяемой в Вашей стране.

отключайте подключайте Правильно И дополнительные принадлежности. Не допускается подключение и отключение пробников или соединительных проводников, если они подключены к контактам находящимся под напряжением.

Заземление прибора. Осциллограф заземляется посредством проводника защитного заземления шнура питания. Во избежание электрошока провод заземления должен быть заземлению. подключен к Перед любым подключением к клеммам, входным или выходным разъемам осциллографа убедитесь, что прибор должным образом заземлен.

Правильно подключайте пробники. Контакты заземления пробников находятся под одним потенциалом с контактом заземления осциллографа. Не допускается подключение контакта заземления пробника к контактам находящимся под напряжением.

Проверяйте все предельные характеристики выводов. Во избежание возгорания или электрошока обратите внимание предельные характеристики а также маркировки на приборе. Перед подключением к выводов, осциллографу любых приборов уточните информацию о предельных допустимых значениях в руководстве по эксплуатации.

Не работайте с прибором без крышек корпуса. Не допускается использование прибора без крышек или панелей корпуса.

Используйте соответствующий предохранитель. Используйте только предохранитель, тип и номинал которого удовлетворяют техническим требованиям данного прибора.

Избегайте прикосновения к оголенным цепям или проводникам. Не допускается прикосновение к оголенным шинам или проводникам, находящимся под напряжением.

Не используйте неисправный прибор. Прекратите эксплуатацию при появлении сомнения в исправности прибора. Перед дальнейшей эксплуатацией прибор должен быть проверен квалифицированным специалистом по обслуживанию.

Обеспечьте соответствующую вентиляцию. За дополнительной информацией по обеспечению надлежащей вентиляции прибора обратитесь к инструкциям по его установке в данном руководстве.

Не допускается использование прибора в условиях повышенной влажности.

Не допускается использование прибора во взрывоопасных условиях.

Держите поверхности прибора сухими и чистыми.

Предупреждающие надписи и символы

Предупреждающие надписи в данном руководстве. В данном руководстве Вы можете встретить следующие предупреждающие надписи:

ОСТОРОЖНО! указывает на условия или действия, приводящие к травмам или даже летальному исходу.

ВНИМАНИЕ! указывает на условия или действия, в результате которых может быть поврежден прибор или другое оборудование.

Предупреждающие надписи на приборе. На приборе Вы можете встретить следующие предупреждающие надписи:

DANGER (OПАСНО!) указывает на непосредственную опасность получения травмы.

WARNING (OCTOPOЖHO!) указывает на потенциальную опасность получения травмы.

CAUTION (ВНИМАНИЕ!) указывает на потенциальную опасность повреждения прибора или другого оборудования.

Предупреждающие символы на приборе. На приборе Вы можете встретить следующие предупреждающие символы:

эксплуатации

ОПАСНОЕ НАПРЯЖЕНИЕ руководству

Обратитесь к Вывод по

защитного заземления

шасси прибора

Вывод

Вывод измерительного заземления

Общие сведения об осциллографах серии

Серия RIGOL DS1000 цифровых запоминающих осциллографов предоставляет исключительные возможности для наблюдения и измерений параметров формы сигнала. Приборы серии компактны и легки. Осциллографы серии DS1000 идеально подходит для испытаний продукции, обслуживания в полевых условиях, для исследований и разработки, для любых проверок и выявления неисправностей аналоговых/цифровых схем, а также для обучающего процесса и практики.

Все осциллографы серии имеют:

• два канала с полосой пропускания:

\$МГц	(DS%\$&C5);
%\$\$МГц	(DS1%\$&75);
&\$\$МГц	(DS1&\$&75);
' \$\$МГц	(DS1' \$&75);

- цветной ТFT жидкокристаллический дисплей с разрешением 320*234 пикселов;
- возможность через порт USB сохранения данных, печати на принтер и обновления программного обеспечения;
- регулируемую яркость осциллограмм, обеспечивающую более эффективную их визуализацию;
- возможность автоматической настройки нажатием одной кнопки (AUTO) для быстрого получения осциллограммы входного сигнала, упрощающей использование осциллографа;
- сохранение до 10 осциллограмм и до 10 настроек во внутренней памяти, поддержка форматов CSV и BMP;
- новая функция увеличения фрагмента позволяет одновременно наблюдать всю осциллограмму сигнала и ее увеличенный фрагмент;
- автоматическое измерение 20 параметров;
- измерение положения курсора, автоматически отслеживающего форму сигнала при его перемещении;

RIGOL

- автоматический покадровый регистратор формы сигнала позволяет автоматически регистрировать и воспроизводить осциллограммы;
- возможность быстрой автокалибровки пользователем;
- встроенные частотомер и быстрое преобразование Фурье (БПФ или FFT);
- цифровые фильтры: нижних частот (ФНЧ), верхних частот (ФВЧ), полосовой (ПФ), режективный (РФ);
- функция допусковой проверки Pass/Fail, оптически изолированный выход Pass/Fail;
- математические функции для осциллограмм: сложение, вычитание и умножение;
- расширенный набор режимов запуска: по фронту (Edge), по видеосигналу (Video), по длительности импульса (Pulse), по скорости нарастания (Slope), чередование каналов (Alternative);
- регулируемый гистерезис уровня запуска;
- многоязычный пользовательский интерфейс;
- всплывающее меню: легкость понимания и простота использования;
- встроенная система помощи на китайском и английском языках;
- простая в использовании файловая система поддерживает ввод на английском и китайском языке.

Принадлежности цифровых осциллографов серии DS1000:

- два пробника (длина кабеля 1.5м), отключаемый аттенюатор (1:1, 10:1);
- сетевой шнур с вилкой, применяемой в стране поставки осциллографа;
- руководство по эксплуатации;
- гарантийный талон.

Содержание

О мерах безопасностиII
Общие сведения об осциллографах серииV
РАЗДЕЛ 1. НАЧАЛО РАБОТЫ1-1
Передняя панель и графический интерфейс1-2
Проверка нового прибора1-7
Первичная проверка работоспособности1-8
Компенсация пробников1-10
Автоматическое получение осциллограммы сигнала 1-13
Органы управления вертикальной системы 1-14
Органы управления горизонтальной системы 1-17
Органы управления системой запуска1-19
РАЗДЕЛ 2. РАБОТА С ОСЦИЛЛОГРАФОМ2-1
Пояснения для вертикальной системы
Пояснения для горизонтальной системы 2-30
Пояснения для системы запуска 2-36
Установки системы цифровой регистрации 2-58
Настройки экрана 2-62
Сохранение и вызов осциллограмм или настроек 2-64
Использование меню утилит 2-72
Автоматическое измерение 2-88
Курсорные измерения
Применение кнопок зоны управления пуском2-103

РАЗДЕЛ З. ПРИМЕРЫ ПРИМЕНЕНИЯЗ-1
Пример 1. Выполнение простых измерений
Пример 2. Измерение задержки сигнала3-2
Пример 3. Регистрация одиночного сигнала
Пример 4. Снижение влияния белого шума
Пример 5. Применение курсорных измерений
Пример 6. Применение режима Х-Ү3-8
Пример 7. Запуск по видеосигналу3-10
Пример 8. Курсорные измерения БПФ 3-12
Пример 9. Допусковая проверка Pass/Fail
РАЗДЕЛ 4. СООБЩЕНИЯ И НЕИСПРАВНОСТИ
Сообщения на экране осциллографа4-1
Устранение неисправностей4-3
РАЗДЕЛ 5. ТЕХНИЧЕСКАЯ ПОДДЕРЖКА И ОБСЛУЖИВАНИЕ5-1
РАЗДЕЛ 6. ПРИЛОЖЕНИЯ6-1
Приложение А. Характеристики6-1
Приложение Б. Принадлежности осциллографов серии DS10006-8
Приложение В. Содержание и чистка прибора

Раздел 1. Начало работы

В этой главе рассматриваются следующие темы:

- Передняя панель и графический интерфейс
- Проверка нового прибора
- Первичная проверка работоспособности
- Компенсация пробников
- Автоматическое получение осциллограммы сигнала.
- Органы управления вертикальной системы
- Органы управления горизонтальной системы
- Органы управления системы запуска осциллографа.

Передняя панель и графический интерфейс

Первое, что Вам необходимо сделать, приступая к работе с осциллографом, это ознакомиться с его передней панелью. Эта глава поможет Вам ознакомиться с расположением регуляторов и кнопок, их назначением. Внимательно прочитайте главу, перед тем как приступить к работе с осциллографом.

На передней панели располагаются регуляторы и кнопки. Регуляторы используются чаще всего, и действие их в целом подобно аналогичным регуляторам любого осциллографа. С помощью кнопок можно непосредственно использовать определенные функции, а также вызывать на экран меню, для выбора пунктов которого используется специальные кнопки расположенные вертикально рядом с экраном. Они позволят Вам получить доступ к большому числу измерительных функций, обеспечивающих широкие возможности: математические функции, опорные сигналы или управление запуском.

Рисунок 1-1

Передняя панель осциллографов серии DS1000

Осциллографы серии DS1000 имеют дружественный графический пользовательский интерфейс. Кнопки и регуляторы на передней панели прибора сгруппированы по зонам в соответствии с их назначением:

- Зона "MENU": содержит кнопки вызова на экран соответствующих меню: автоматический измерений "Measure", курсорных измерений "Cursor", регистрации "Acquire", дисплея "Display", сохранения "Storage", сервисного "Utility".
- Зона "VERTICAL": содержит кнопки вызова на экран меню CH1, CH2, MATH, REF ; кнопку OFF, отключающую активные в данный момент осциллограмму или меню.
- Зона "HORIZONTAL": содержит кнопку "MENU"; для вызова на экран меню горизонтальной системы.
- Зона "TRIGGER": содержит кнопку "MENU" для вызова на экран меню системы запуска; кнопку "50%" для установки значения уровня запуска на уровень середины размаха сигнала; кнопку принудительного запуска "FORCE".
- Зона "RUN CONTROL": содержит кнопки автоматической настройки "AUTO" и управления пуском "RUN/STOP".
- Зона функциональных кнопок: содержит 5 серых кнопок, расположенных вертикально вдоль правой стороны ЖК-дисплея, для выбора установок и действий в текущем активном меню.
- Регуляторы: для изменения горизонтального и вертикального положения "[©]POSITION и масштаба [©]SCALE ", уровня запуска [©]LEVEL ".

Рисунок 1-2

Элементы управления и коммутации на передней панели прибора.

Значение символов в этом руководстве

В этом руководстве используются те же обозначения кнопок и регуляторов, что и на передней панели прибора. Рамка вокруг наименования обозначает кнопку меню на передней панели, например, Measure; (�) – многофункциональный регулятор ③; ③POSITION – один из двух регуляторов положения; ③SCALE – один из двух регуляторов масштаба; ③LEVEL – регулятор уровня запуска. Наименование с серым фоном обозначает выбранное текущее состояние для пункта меню, например, Waveform в меню Storage.

Вид экрана (аналоговые каналы и цифровые каналы)

Проверка нового прибора

Проверьте новый осциллограф серии DS1000 в следующей последовательности.

1. Проверьте отсутствие повреждения транспортной упаковки.

Сохраните поврежденную упаковку или упаковочный материал до полной механической, электрической проверки и проверки соответствия комплекта поставки.

2. Проверьте принадлежности.

Комплект принадлежностей, поставляемый с прибором, должен соответствовать перечню в данном руководстве «Приложение Б. Принадлежности для осциллографов серии DS1000».

Если комплект неполный, или при наличии повреждений уведомьте об этом коммерческого представителя RIGOL, у которого был приобретен прибор.

3. Проверьте осциллограф.

В случае обнаружения механических повреждений или дефектов, неполадок в работе прибора, или ошибки при автопроверке уведомьте об этом коммерческого представителя RIGOL, у которого был приобретен прибор.

При обнаружении повреждения транспортной упаковки или следов механического воздействия на упаковочных материалах сообщите об этом представителю транспортной компании, а также уведомьте об этом коммерческий отдел RIGOL. Сохраните транспортировочные материалы для дальнейшей проверки.

Для удовлетворения претензии офисы RIGOL безотлагательно примут меры на усмотрение RIGOL по ремонту или замене.

Первичная проверка работоспособности

Выполните приведенную ниже процедуру быстрой проверки, чтобы удостовериться в работоспособности Вашего прибора.

1. Включите прибор.

Используйте только сетевой шнур, предназначенный специально для Вашего осциллографа. Убедитесь, что источник питания обеспечивает напряжение переменного тока от 100В_{эфф.} до 240В_{эфф.} с частотой от 45Гц до 440Гц. Включите питание прибора и дождитесь появления на экране окна осциллограмм. Нажмите кнопку <u>Storage</u>, нажмите затем функциональную кнопку, соответствующую верхнему пункту меню **Storage**, и с помощью этой функциональной кнопки или многофункционального регулятора (**U**) с последующим нажатием функциональной кнопки **Storage** выберите пункт меню **Factory**.

Рисунок 1-5

осторожно!

Во избежание электрошока убедитесь, что осциллограф правильно заземлен.

2. Подайте сигнал на вход осциллографа.

Э Установите переключатель на пробнике в положение 10Х и подключите пробник к разъему канала СН1 осциллографа. Для этого совместите положение выступов на разъеме BNC СН 1 осциллографа с пазами разъема пробника, вставьте разъем пробника в разъем осциллографа и поверните замок разъема пробника вправо до щелчка.

Подключите контакт заземления и наконечник пробника к соответствующим контактам выхода сигнала для компенсации пробника.

Выход сигнала для компенсации пробника.

Рисунок 1-6

© Сделайте установку ослабления пробника в осциллографе – 10Х. Для этого последовательно нажмите кнопки $CH1 \rightarrow Probe \rightarrow 10X$.

- ③ Нажмите кнопку AUTO . Через несколько секунд Вы увидите на экране меандр (около 1кГц; амплитуда 3В).
- ④ Нажмите кнопку OFF или еще раз нажмите кнопку CH1 для выключения канала CH1, нажмите кнопку CH2 для включения канала 2 и повторите шаги 1 3.

Компенсация пробников

Выполните компенсацию для согласования пробника и используемого с ним входного канала. Эту процедуру нужно проводить всякий раз при любом первом подключении пробника к входному каналу.

- Установите в меню канала CH1 ослабление 10Х, установите переключатель ослабления пробника в положение 10Х и подключите разъем пробника к входу 1 осциллографа. Если Вы используете насадку-крючок наконечника пробника, убедитесь в надежности контакта и плотности ее посадки. Подключите контакт заземления и наконечник пробника к соответствующим контактам выхода сигнала для компенсации пробника, нажмите кнопку CH1, затем нажмите кнопку AUTO.
- 2. Проверьте форму сигнала на осциллограмме.

Перекомпенсация

Правильная компенсация

Недокомпесация

Рисунок 1-9

- При необходимости, используя неметаллический инструмент, вращением подстроечного конденсатора пробника добейтесь наиболее правильного изображения меандра на экране осциллографа.
- 4. Повторите процедуру при необходимости.

осторожно!

Во избежание электрошока при использовании пробника убедитесь в исправности изоляции его кабеля, не допускается касаться его металлических частей, имеющих контакт с источником напряжения.

Автоматическое получение осциллограммы

сигнала

Осциллограф имеет функцию автоматической оптимальной настройки для получения осциллограммы входного сигнала на экране. Эта функция требует, чтобы входной сигнал имел частоту не менее 50Гц и коэффициент заполнения не ниже 1%.

При нажатии кнопки AUTO осциллограф автоматически выберет значение настроек горизонтальной и вертикальной систем и системы запуска для получения на экране осциллограммы входного сигнала. Впоследствии Вы можете корректировать настройки вручную для получения требуемого результата.

Серия DS1000 – это семейство двухканальных осциллографов с возможностью запуска внешним сигналом. В следующем примере Вы должны подать сигнал на вход канала 1.

1. Подключите источник сигнала к входу осциллографа.

2. Нажмите кнопку AUTO .

При нажатии кнопки <u>AUTO</u> осциллограф может изменить текущие настройки получения осциллограммы. При этом могут автоматически измениться вертикальный и горизонтальный масштабы, положение осциллограммы, а также настройки системы запуска: тип связи, режим, положение момента запуска, фронт, уровень и настройки меню настроек системы запуска.

Органы управления вертикальной системы

Рисунок 1-14

1. Перемещение осциллограммы на экране по вертикали при помощи регулятора <a>POSITION.

Регулятор ^{©POSITION} позволяет перемещать осциллограмму сигнала по вертикали, это перемещение калибровано. Обратите внимание, что при повороте регулятора ^{©POSITION} значение напряжения некоторое время отображается на экране, указывая, удаление нулевого уровня (земли) сигнала от центра экрана. Также заметьте, что маркер нулевого уровня (земли) на левой стороне экрана перемещается в соответствии с поворотом регулятора ^{©POSITION}.

Советы по измерению

Тип связи канала по постоянному току (открытый вход) позволяет Вам быстро измерить компоненту постоянного тока сигнала через напряжение до маркера нулевого уровня (земли).

Тип связи канала по переменному току (закрытый вход), когда компонент постоянного тока сигнала блокирован, позволяет Вам использовать большую чувствительность для исследования компоненты переменного тока.

Быстрое перемещение осциллограммы в центр экрана

Вращением регулятора ^{(©POSITION} переместите осциллограмму сигнала по вертикали и нажмите на ручку регулятора ^{(©POSITION}, при этом положение осциллограммы мгновенно вернется к нулю. Этот режим ускоренного переключения особенно полезен, когда положение осциллограммы находится далеко за экраном, и необходимо немедленно вернуть ее в центр экрана.

2. Изменяя вертикальные настройки, наблюдайте за изменением при этом показания строки состояния.

Вы можете быстро оценить настройки вертикальной системы через показания, отображаемые в строке состояния.

- Изменяя вертикальный масштаб с помощью регулятора ^{OSCALE}, обратите внимание, как при этом меняются показания в строке состояния.
- Нажмите кнопку СН1.
- При этом на экране появится меню для функциональных кнопок, и канал СН1 будет включен (или останется включенным, если это было сделано ранее).
- Нажмите каждую функциональную кнопку и наблюдайте за изменениями в строке состояния. Каналы 1 и 2 имеют возможность выбора более мелкого шага регулировки вертикального масштаба регулятором ^{©SCALE}. Нажатием функциональной кнопки пункта меню Volts/Div, Вы можете выбрать шаг изменения вертикального масштаба Coarse (грубо) или Fine (точно).
- Нажмите кнопку OFF для выключения канала.

Быстрое переключение Coarse/Fine:

Переключать режимы Coarse (грубо)/Fine (точно) можно не только используя меню каналов CH1 и CH2, но также простым нажатием на ручку регулятора вертикального масштаба SCALE зоны VERTICAL.

Органы управления горизонтальной системы

На рисунке 1-15 показаны кнопка <u>MENU</u>, регуляторы <u>POSITION</u> и <u>SCALE</u> горизонтальной системы – зоны "HORIZONTAL". Следующие примеры помогут Вам понять их действие и отображение соответствующей информации в строке состояния.

Рисунок 1-15

1. Поворачивая ручку регулятора ^{OSCALE}, наблюдайте за изменением показания строки состояния.

Регулятор ^{(COSCALE} горизонтальной системы изменяет коэффициент развертки в соответствии с шагом ряда 1-2-5, значение отображается в строке состояния. Диапазон коэффициента развертки для каждого осциллографа серии DS1000 приведен в разделе характеристик. Осциллографы серии обеспечивают коэффициент горизонтальной развертки от 5нс/ДЕЛ.^{*} до 50с/ДЕЛ.

* ЗАМЕЧАНИЕ: диапазон коэффициента горизонтальной развертки определяется конкретной моделью осциллографа.

RIGOL

Быстрое включение/выключение режима увеличения фрагмента Нажмите на ручку регулятора ©SCALE зоны "HORIZONTAL" на передней панели для включения или выключения режима увеличения фрагмента. Это эквивалентно следующим действиям через систему меню:

MENU \rightarrow **Delayed**.

2. Горизонтальный регулятор ^{©POSITION} перемещает отображаемый сигнал по горизонтали в окне осциллограмм.

3. Нажмите кнопку MENU для вызова горизонтального меню Time.

В этом меню Вы можете включить или выключить режим увеличения фрагмента, выбрать режим отображения на дисплее Y-T, X-Y или ROLL и вращением регулятора горизонтального положения ^(©POSITION) установить положение момента запуска.

Установка момента запуска

Органы управления системой запуска

На рисунке 1-16 показана зона "TRIGGER" передней панели, содержащая регулятор уровня запуска и три кнопки управления. Следующие примеры помогут Вам понять действие органов управления запуском (зоны "TRIGGER") и отображение соответствующей информации в строке состояния.

Рисунок 1-16

1. Вращая регулятор уровня запуска, наблюдайте за происходящими изменениями на экране.

В осциллографах серии DS1000 при вращении регулятора нажатии кнопки 50% отображение информации об этом на экране кратковременно производится двумя способами. Во-первых, значение уровня запуска отображается в левой нижней части экрана. Во-вторых, уровень запуска отображается горизонтальной линией в окне осциллограмм.

Быстрая установка нулевого уровня запуска

Вращением регулятора ^{©LEVEL} установите произвольное значение уровня запуска; затем нажмите на ручку регулятора ^{©LEVEL}, уровень запуска мгновенно вернется к нулевому значению.

2. Изменяя настройки наблюдайте запуска, за изменением информации в строке состояния.

Нажмите кнопку MENU зоны "TRIGGER".

На экране появится меню Trigger, показывая возможные настройки системы запуска с помощью функциональных кнопок.

На рисунке 1-17 показано меню Trigger.

Trigger	
Mode	Нажмите кнопку Mode и выберите Edge.
 Edge 	
Source	Нажмите кнопку Source и выберите CH1.
<u>CH1</u>	
Slope	Нажмите кнопку Slope и выберите нарастающий фронт.
<u> </u>	
Sweep	Нажмите кнопку Sweep и выберите Auto.
 Auto 	, i i <u>—</u>
Set Up	Нажмите кнопку Set Up для вызова на экран следующего меню
	Set Up.

Рисунок 1-17

ЗАМЕЧАНИЕ: изменение режима запуска, наклона фронта и источника запуска отображается в строке состояния в правом верхнем углу экрана.

3. Нажмите кнопку 50%

Это кнопка единственной функции. При нажатии кнопки 50% осциллограф установит уровень запуска на уровень середины размаха сигнала.

4. Нажмите кнопку FORCE

Нажатие этой кнопки производит запуск осциллографа независимо от выполнения условий запуска, обычно используется для настройки при режимах запуска "Normal" или "Single". При нажатии этой кнопки запуск производиться не будет, если регистрация уже завершена.

Важное замечание

Период блокировки запуска (Holdoff) – это временной интервал, в течение которого осциллограф не реагирует на пусковой сигнал. В течение этого периода система запуска становятся "слепой" пропуская выполнение условий запуска. Эта функция помогает рассматривать сложные сигналы, например, сигнал с амплитудной модуляцией (AM). Нажмите кнопку **Holdoff** для включения этого режима и вращением регулятора (**V**) установите требуемый период блокировки запуска.

Раздел 2. Работа с осциллографом

Вы уже получили краткое представление о назначение кнопок и регуляторов зон: "VERTICAL", "HORIZONTAL" и "TRIGGER" передней панели осциллографов серии DS1000. Теперь Вы также умеете определять текущие настройки осциллографа по данным строки состояния.

В этой главе более подробно описываются все группы кнопок и регуляторов передней панели, а также меню. Читая далее руководство, Вы сможете расширить свои знания о методах работы.

Мы рекомендуем Вам полностью выполнить все приведенные в главе упражнения. Это поможет Вам полнее использовать мощные измерительные возможности Вашего осциллографа.

В этой главе рассматриваются следующие темы:

■ изучение вертикальной системы (CH1, CH2, MATH, REF, OFF,

вертикальное положение ^{@POSITION}, вертикальный масштаб ^{@SCALE});

- изучение горизонтальной системы (MENU, горизонтальное положение ^{(DOSITION}), горизонтальный масштаб ^{(DSCALE});
- изучение системы запуска(^③LEVEL</sup>, MENU, <u>50</u>%, FORCE);
- настройки системы регистрации (Acquire);
- настройки экрана (Display);
- сохранение и вызов осциллограмм, форматы *.csv и *.bmp и другие настройки меню сохранения (Storage);
- настройки сервисного меню (Utility);
- автоматическое измерение (Measure);
- курсорные измерения (Cursor);
- применение кнопок зоны "RUN CONTROL" (AUTO, RUN/STOP).

Пояснения для вертикальной системы

I. Настройки каналов

Для каждого канала осциллографов серии DS1000 имеется собственное меню управления, которое появляется после нажатия кнопки <u>CH1</u> или <u>CH2</u>. Настройки и их значение для всех пунктов меню показаны в таблице ниже.

CH1 Coupling	Меню	Установки	Комментарии
		AC	блокируется компонента
BW Limit			постоянного тока входного
OFF			сигнала.
Probe		DC	пропускаются обе компоненты и
• 1X	Coupling		постоянного, и переменного тока
			входного сигнала.
Digital Filter		GND	отключает входной сигнал и
1/2			замыкает вход усилителя канала
-			на землю.
		ON	ограничивает ширину полосы
	BW Limit		пропускания канала до 20МГц для
			уменьшения отображаемых шумов
			на экране.
		OFF	полная полоса пропускания.
		1X	данная установка позволяет
		10X	учитывать коэффициент
	Probe	100X	ослабления пробника для
		1000X	отображения на экране
			реальных значений напряжения.
	Digital Filter		установки цифрового фильтра (см.
		ļ,	Таблица 2-4)
	1/2		переход к следующей части меню
			(далее этот символ приводится
	-		без комментариев)

Рисунок 2-1 Таблица 2-1

Рисунок 2-2 Таблица 2-2

CH1	Меню	Установки	Комментарии
2/2 Volts/Div Coarse	2/2		возврат к предыдущей части меню (далее этот символ приводится без комментариев)
Invert OFF	Volts/Div	Coarse Fine	выбирает разрешение для регулятора ^{(DSCALE} ; шаг в соответствии с рядом 1-2-5. переход к более мелкому шагу.
	Invert	ON OFF	включает инверсию сигнала. возвращает к начальному виду сигнала.

1. Связь канала по входу

Подадим для примера на вход канала CH1 синусоидальный сигнал с постоянной составляющей.

Нажмите кнопки CH1 → Coupling → AC для установки связи по переменному току для канала 1. Это блокирует постоянную компоненту входного сигнала.

Осциллограмма сигнала показана на рисунке 2-3:

Нажмите кнопку <u>CH1</u> → **Coupling** → <u>DC</u> для установки связи по постоянному току для канала 1. Это позволит пропустить обе компоненты входного сигнала постоянную и переменную.

Осциллограмма сигнала показана на рисунке 2-4:

Рисунок 2-4

Нажмите кнопки $CH1 \rightarrow Coupling \rightarrow GND$ для замыкания входа усилителя канала CH1 на землю. Эта установка отключает входной разъем осциллографа от входа усилителя канала 1.

Вид экрана показан на рисунке 2-5:

2. Установка ограничения полосы пропускания

Подадим для примера на вход канала СН1 сигнал, содержащий высокочастотную компоненту.

Нажмите кнопки <u>CH1</u> → **BW Limit** → OFF для установки полной полосы пропускания и использования максимальных возможностей осциллографа при исследовании высокочастотной компоненты сигнала.

Осциллограмма сигнала показана на рисунке 2-6:

Нажмите кнопки $CH1 \rightarrow BW$ Limit $\rightarrow ON$ для установки верхней границы полосы пропускания 20МГц и обрезания высокочастотной компоненты сигнала выше 20МГц.

Осциллограмма сигнала показана на рисунке 2-7:

Рисунок 2-7
3. Установка коэффициента ослабления пробника

При использовании пробника осциллограф позволяет учитывать коэффициент его ослабления. После установке коэффициента ослабления вертикальный масштаб осциллографа изменяется так, что результаты измерений отражают реальный уровень напряжения на входе пробника.

Для того чтобы изменить (или проверить) установку коэффициента ослабления пробника, нажмите кнопку <u>CH1</u> или <u>CH2</u> (в соответствии с используемым каналом), затем с помощью функциональной кнопки **Probe** или многофункционального регулятора (**V**) с последующим нажатием функциональной кнопки **Probe** измените коэффициент ослабления в соответствии с ослаблением используемого пробника.

Эта установка будет сохранена в памяти до следующего изменения.

На рисунке 2-8 показан пример использования пробника 1:1000 и установки соответствующего ему коэффициента ослабления.

Таблица 2-3

Коэффициент	Соответствующая
ослабления	установка
пробника	осциллографа
1:1	1X
1:10	10X
1:100	100X
1:1000	1000X

4. Установка вертикального масштаба (Volts/Div)

Осциллограф позволяет изменять вертикальный масштаб **Volts/Div** двумя способами: **Coarse** (грубо)/Fine (точно). Диапазон изменения вертикального масштаба 2мВ—5В/ДЕЛ.

- Coarse (грубо): это установка по умолчанию, в этом случае вертикальный масштаб выбирается из ряда 1-2-5 от 2мВ/ДЕЛ., 5мв/ДЕЛ., 10мВ/ДЕЛ. и т.д. до 5В/ДЕЛ.
- Fine (точно): при этой установке появляется возможность выбора более мелкого шага для вертикального масштаба между крупными шагами. Это полезно, если Вам необходимо точно настроить вертикальный размер осциллограммы сигнала.

Быстрое переключение Coarse (грубо)/Fine (точно):

переключать режимы Coarse (грубо)/Fine (точно) можно не только используя меню, но также просто нажав на ручку регулятора вертикального масштаба <u>SCALE</u> зоны "VERTICAL".

5. Инвертирование осциллограммы

Инверсия переворачивает на осциллограмме фазу сигнала на 180 градусов относительно нулевого уровня.

Если синхронизация осциллографа осуществляется от измеряемого сигнала, то при включении инверсии этого канала уровень запуска будет также инвертирован.

На рис. 2-10 и 2-11 показано действие инверсии.

Рисунок 2-10

Рисунок 2-11

Цифровой фильтр

Нажмите кнопки CH1 → Digital Filter , на экране появится меню цифрового фильтра. Установка верхней и нижней граничных частот осуществляется вращением многофункционального регулятора (�).

Рисунок 2-14 Таблица 2-4

Filter	Меню	Установки	Комментарии
Digital Filter		ON	цифровой фильтр включен
OFF Filter Type	Digital Filter	OFF	цифровой фильтр выключен
1f Upper Limit		t⊐f	выбор ФНЧ (фильтр низких частот)
24.50MHz Lower Limit	Filter Type	t,f	выбор ФВЧ (фильтр высоких частот)
24.50MHz		tf	выбор ПФ (полосой фильтр)
L		₽₽₽	выбор РФ (режективный фильтр)
		¢	вращением
	Unner Limit	<частота>	многофункционального
			регулятора (💙) установите
			верхнюю граничную частоту
		Ð	вращением
	Lower Limit	<частота>	многофункционального
			регулятора (🍤) установите
			нижнюю граничную частоту
	•		возвращение к предыдущему
			меню (далее этот символ
			приводится оез комментариев)

II. Математические функции

Математические функции включают в себя сложение, вычитание, умножение и FFT – быстрое преобразование Фурье (БПФ) для каналов CH1 и CH2. Результат математических функций может быть измерен или визуально с помощью сетки, или с помощью курсоров.

Рисунок 2-15

Масштаб
осциллограммы
результата
математической
операции

Рисунок 2-16

-	T C	~ -
)	Таблица	2-5

Math
Operate
A+B
Source A
CH1
Source B
CH2
Invert
OFF

Меню	Установки	Комментарии
	A+B	сложение сигналов источника A и источника B
Operate	A-B	разность сигналов источника A и источника B
Operate	A×B	произведение сигналов
		источника А и источника В
	FFT	быстрое преобразование Фурье
	<БПФ>	
Source A	CH1	выбор канала CH1 или CH2 в
Source A	CH2	качестве источника А
Source B	CH1	выбор канала CH1 или CH2 в
Source B	CH2	качестве источника В
	ON	инверсия осциллограммы
		результата математической
Invort		операции включена.
Invert	OFF	инверсия осциллограммы
		результата математической
		операции выключена.

Использование быстрого преобразования Фурье

Быстрое преобразование Фурье (FFT) позволяет математически получить из временной зависимости сигнала в его частотные компоненты. Результат быстрого преобразования Фурье полезен в следующих случаях:

- измерение коэффициента гармоник и искажений в системах;
- шумовая характеристика источников питания постоянного тока;
- анализ колебаний.

2-0		I
Меню	Установки	Комментарии
	A+B	сложение сигналов источника А и источника В
	A-B	разность сигналов источника А
Operate	A×B	и источника В произведение сигналов источника А и источника В
	FFT	выберите быстрое
	<ЫФ>	преобразование Фурье
Source	CH1 CH2	выбор канала CH1 или CH2 в качестве источника FFT (БПФ)
Window	Rectangle Hanning Hamming Blackman	выбор типа окна для FFT (БПФ)
	Split	отобразить результат FFT
Disalara		(БПФ) на половине экрана
Display	Full Screen	отобразить результат FFT
		(БПФ) на всем экране
	Vrms	выбрать размерность по
Scale		вертикали в Vrms (В _{эфф}).
Juic	dBVrms	выбрать размерность по
		вертикали в dBVrms (дБВ _{эфф}).

Рисунок	2-17	Таблица

Важное замечания по FFT (БПФ)

- Сигналы, имеющие составляющую постоянного тока или смещение, могут стать причиной неверной амплитуды результата FFT (БПФ). Чтобы уменьшить влияние составляющей постоянного тока, включите связь с источником сигнала по переменному току (закрытый вход (**Coupling** →AC)).
- 2. Чтобы уменьшить влияние белого шума и помех дискретизации для периодических событий, выберите режим регистрации осциллографа усреднение (Acquire → Acquisition → Average).
- Для отображения на экране результатов FFT (БПФ) с большим динамическим диапазоном используйте шкалу dBVrms (дБВ_{эфф}). Шкала dBVrms (дБВ_{эфф}) при выводе на экран использует для амплитуды логарифмический масштаб.

Выбор окна FFT (БПФ)

Осциллографы серии DS1000 предлагают четыре функции окна для FFT (БПФ). Каждая функция окна предполагает определенный компромисс между разрешающей способностью по частоте и точностью определения амплитуды. От приоритетов измерения и характеристик источника сигнала зависит, какое окно следует использовать. Ниже приведены рекомендации для выбора наиболее подходящей функции окна.

Таблица 2-7		
Окно	Особенности	Лучше применение
Rectangle (прямоугольник)	Прекрасное разрешение по частоте и наихудшее разрешение по амплитуде. Это, по существу, соответствует работе без окна.	Симметричные переходные процессы или выбросы, когда уровень сигнала до и после события практически равны. Синусоидальные колебания с равными амплитудами и постоянной частотой. Широкополосный белый шум с относительно медленно меняющимся спектром.
Hanning (окно Хеннинга) Hamming (окно Хэмминга)	По сравнению с прямоугольным окном лучше точность по частоте и хуже по амплитуде. У Хэмминга несколько лучше разрешение по частоте, чем у Хеннинга.	Синусоидальный, периодический и узкополосный белый шум. Асимметричные переходные процессы или выбросы, когда уровень сигнала до и после события значительно отличаются.
Blackman (окно Блэкмэна)	Наилучшее разрешение по амплитуде, наихудшее по частоте.	Одночастотная форма сигнала, для поиска гармоник высших порядков

Важные замечания:

Разрешение БПФ FFT (БПФ) – отношение частоты выборки к числу точек FFT (БПФ). При фиксированном числе точек FFT (БПФ), более низкая частота дискретизации дает лучшее разрешение.

Предельная (Найквиста) частота – наивысшая частота сигнала, регистрация которого возможна без искажения от дискретизации любым цифровым осциллографом, работающим в режиме реального времени в пределах полосы пропускания. Предельная (Найквиста) частота равна половине частоты выборки. Попытки регистрации сигнала в режиме реального времени с частотой выше частоты Найквиста приведут к искажениям формы сигнала и ошибкам.

III. Использование опорного сигнала (REF)

Опорные осциллограммы – это сохраненные в памяти осциллограммы, которые могут быть выведены на экран. Функция использования опорного сигнала доступна после сохранения выбранной осциллограммы в энергонезависимой памяти.

Нажмите кнопку REF для вызова на экран меню опорного сигнала.

REF	Меню	Установки	Комментарии
CH1		CH1	выбор канала 1 для записи
Location			опорного сигнала
Internal		CH2	выбор канала 2 для записи
	Source		опорного сигнала
Save	Source	MATH/FFT	выбор MATH/FFT для опорного
			сигнала
Imp./Exp.			
Reset		Internal	выбрать внутреннюю память
	Location		осциллографа
		External	выбрать внешнюю память
	Savo		сохранить осциллограмму опорного
	Save		сигнала во внутреннюю память
	Tmp /Evp		перейти к меню Imp./Exp. (см.
	тпр./ схр.		таб.2-10)
	Reset		сброс опорного сигнала

Таблица 2-8 (использование внутренней памяти) Рисунок 2-18

- /				
REF	Меню	Установки	Комментарии	
CH1		CH1	выбор канала 1 для записи опорного	
Location			сигнала	
External		CH2	выбор канала 2 для записи опорного	
Externar	•		сигнала	
Save	Source	MATH/FFT	выбор MATH/FFT для опорного	
			сигнала	
Import				
· · · · · · · · · · · · · · · · · · ·				
Reset		Internal	выбрать внутреннюю память	
	Location	Internal	осциллографа	
	Location			
		External	выорать внешнюю память	
	Course		сохранить опорный сигнал во	
	Save		внешнюю память	
	Import		перейти к меню Import (см. таб.2-14)	
	Reset		сброс опорного сигнала	

Рисунок 2-19 Таблица 2-9 (использование внешней памяти)

Импорт (Import) и экспорт (Export)

Нажмите кнопки REF → Imp./Exp. для перехода к следующему меню.

Рисунок 2-20	Таблица 2-10		
Imp./Exp.	Меню	Установки	Комментарии
Explorer Files Export	Explorer	Path Directory File	выберите путь, каталог, файл
Import	Export		копирование файла опорного сигнала из внутренней памяти во внешнюю (см. Таблица 2-11)
	Import		копирование файла опорного сигнала во внутреннюю память
	Delete File		удаление файла

Вид экрана импорта и экспорта файлов показан на следующем рисунке.

Рисунок 2-21

Экспорт (Export)

Нажмите кнопки $\overline{\text{REF}} \rightarrow \text{Imp./Exp.} \rightarrow \text{Export}$ для перехода к следующему меню.

Рисунок 2-22 Таблица 2-11

Expo

t

Ŧ

X

rt	Меню	Установки	Комментарии
	+		переместить курсор вверх
	Ŧ		переместить курсор вниз
	×		удалить выбранный символ
	Save		осуществление экспорта

Вид экрана экспорта файлов показан на следующем рисунке.

Рисунок 2-23

Сохранение во внешнюю память

Нажмите кнопки REF → Save для перехода к следующему меню.

```
Рисунок 2-24 Таблица 2-12
```

Save	Меню	Установки	Комментарии
File		Path	выберите путь, каталог, файл
	Explorer	Directory	
New File		File	
	New File		создание нового файла
<u>Delete File</u>	(New Folder)		(создание нового каталога)
	Delete File		удаление файла
	(Del Folder)		(удаление каталога)
1			

Вид экрана при сохранении файлов показан на следующем рисунке.

Рисунок 2-25

Создание нового файла или каталог

Нажмите кнопки $\overrightarrow{\text{REF}}$ \rightarrow **Save** \rightarrow **New File** (или **New Folder**) для перехода к следующему меню.

Рисунок 2-26 Таблица 2-13

New File	Меню	Установки	Комментарии
	t		переместить курсор вверх
_ +	Ŧ		переместить курсор вниз
X	×		удалить выбранный символ
Save	Save		создание нового каталога или сохранение в новом файле
1_			

Вид экрана при вводе символов с экранной клавиатуры показан на следующем рисунке.

Импорт (Import)

Нажмите кнопки REF → Import для перехода к следующему меню.

Рисунок 2-28 Таблица 2-14

Import Evelorer	Меню	Установки	Комментарии
File	Explorer	Path Directory File	выберите путь, каталог, файл
Import	Import		копирование файла опорного сигнала во внутреннюю память.
		-	
1			

Вид экрана при импорте показан на следующем рисунке.

Отображение опорного сигнала на экране

- 1. Нажмите кнопку REF для вызова на экран меню опорного сигнала.
- Нажатием верхней функциональной кнопки выберите по желанию CH1,CH2, MATH, FFT (БПФ) в качестве источника опорного сигнала.
- 3. Вращением регуляторов положение <a>OSITION и вертикальный масштаб

@SCALE выберите положение и размер осциллограммы опорного сигнала.

- Выберите тип памяти для сохранения осциллограммы опорного сигнала нажатиями второй сверху функциональной кнопки.
- 5. Процесс сохранения, а затем и сама осциллограмма опорного сигнала будет отображаться на экране после нажатия средней функциональной кнопки.

ЗАМЕЧАНИЕ: функция опорного сигнала не действует в режиме Х-Ү.

IV. Использование вертикальных регуляторов

OPOSITION N OSCALE

Вы можете использовать вертикальные элементы управления при отображении формы сигналов для регулировки вертикального масштаба <u>SCALE</u> и положения <u>POSITION</u>, а также устанавливать входные параметры.

1. Использование регулятора вертикального положения ^{©POSITION}

Регулятор вертикального положения ^{©POSITION} позволяет изменять положение осциллограмм на экране для всех каналов (включая MATH, REF). Чувствительность регулятора зависит от скорости изменения вертикального положения.

Нажатие на ручку этого регулятора устанавливает нулевое положение осциллограммы канала.

2. Использование регулятора вертикального масштаба <a>SCALE

Регулятор вертикального масштаба <u>SCALE</u> позволяет изменять коэффициент вертикального отклонения для осциллограмм всех каналов (включая MATH и REF). Если выбран "грубый" шаг изменения вертикального масштаба **Volts/Div**., то вертикальный масштаб изменяется в диапазоне от 2мB/ДЕЛ. до 5B/ДЕЛ. в соответствии с рядом 1-2-5. Если выбран "мелкий" шаг изменения вертикального масштаба **Volts/Div**., то крупные шаги масштаба дополнительно делятся на более мелкие шаги.

- 3. Регуляторы вертикального масштаба <a>Scale и положения <a>POSITION действуют только для активного канала.
- Информация о вертикальном положении отображается в процессе изменения в левой нижней части экрана и имеет тот же цвет что соответствующий канал. Единица измерения – напряжения V (Вольт).

Пояснения для горизонтальной системы

Осциллограф отображает текущее значение горизонтального масштаба в строке состояния – время на деление. Поскольку для всех отображаемых осциллограмм используется одна и та же временная развертка, то прибор показывает только одно значение горизонтального масштаба для всех отображаемых каналов, кроме случая, когда Вы используете увеличение фрагмента (**Delayed**) или чередование каналов при запуске (Alternate). Горизонтальные элементы управления позволяют изменять горизонтальные масштаб и положение осциллограмм. Горизонтальный центр экрана – точка начала отсчета времени для осциллограмм. Изменение горизонтального масштаба приводит к растягиванию или сжатию осциллограммы относительно центра экрана.

Регулятор горизонтального положения изменяет отображаемое положение осциллограммы относительно момента запуска.

Горизонтальные регуляторы

- OSITION: изменяет горизонтальное положение осциллограмм всех каналов (включая МАТН). Чувствительность этого регулятора зависит от установленной длительности развертки. Нажатие на ручку этого регулятора сбрасывает установленное ранее смещение момента запуска и перемещает его в нулевое положение в центр экрана.
- SCALE: позволяет выбрать значение горизонтальной развертки ВРЕМЯ/ДЕЛ. для основной осциллограммы или ее растянутого фрагмента. Если включен режим увеличения фрагмента, ширина окна фрагмента изменяется изменении при коэффициента горизонтальной развертки.

Горизонтальное меню

Нажмите кнопку <u>MENU</u> зоны "HORIZONTAL" для вызова на экран горизонтального меню. Установки этого меню приведены в следующей таблице:

Рисунок 2-38. Информация об установках горизонтальной системы в строке состояния и индикаторы окна осциллограмм

RIGOL

Значение индикаторов и сообщений в строке состояния

- 1 Этот символ отображает положение окна текущей осциллограммы в памяти.
- 2 Этот символ отображает положение момента запуска в памяти.
- 3 Этот символ отображает положение момента запуска в окне текущей осциллограммы.
- 4 Это значение в строке состояния отображает коэффициент развертки (горизонтальный масштаб).
- 5 Это значение в строке состояния отображает величину смещения момента запуска относительно центра окна или начала отсчета осциллограммы.

Важные замечания

- Y-T: основной режим визуализации осциллографа. Показывает зависимость напряжения зарегистрированной формы сигнала (по вертикальной оси) от времени (по горизонтальной оси).
- X-Y: отображает соотношение напряжения сигнала канала 1 по горизонтальной оси и напряжения сигнала канала 2 по вертикальной оси.
- Roll (режим "самописец"): этот режим доступен только при установке коэффициента развертки 500мс/ДЕЛ. или медленнее и режима запуска автоматический (AUTO). В этом режиме отображение формы сигнала обновляется справа налево. В режиме "самописец" установки запуска и горизонтальное перемещение осциллограммы не действуют.
- Slow Scan (режим медленного сканирования): этот режим доступен только при установке коэффициента развертки 50мс/ДЕЛ. или медленнее и режима запуска – автоматический (AUTO). В этом режиме отображение формы сигнала обновляется слева направо. При выборе этого режима должна быть установлена связь по входу для канала измерения DC (открытый вход).
- Тіme/Div (ВРЕМЯ/ДЕЛ.): горизонтальный масштаб, если регистрация сигнала остановлена (использованием кнопки RUN/STOP), то регулятор Time/Div растягивает или сжимает осциллограмму.

Увеличение фрагмента

Режим увеличение фрагмента позволяет растягивать на всю ширину экрана участок основного окна осциллограммы. Вы можете использовать функцию увеличения фрагмента для локализации и горизонтального растягивания участка базовой осциллограммы с целью более детального (при более высоком горизонтальном разрешении) анализа сигнала. Используйте увеличение фрагмента для растягивания участка базовой осциллограммы, чтобы увидеть больше количество деталей. Нужно учитывать, что установка горизонтального масштаба растянутого участка не может быть больше длительности развертки базовой осциллограммы.

Участок осциллограммы растянутый по горизонтали в нижнем окне

Коэффициент развертки базовой осциллограммы

Рисунок 2-39. Окно увеличения фрагмента

Следующие инструкции покажут вам, как пользоваться увеличением фрагмента.

- 1. Подключите к осциллографу источник сигнала и добейтесь стабильного изображения.
- 2. Нажмите кнопку горизонтального меню <u>MENU</u> → **Delayed** → ON или нажмите на ручку регулятора горизонтального масштаба ^{©SCALE}, чтобы включить режим увеличения фрагмента.

Экран будет разделен на две части. Верхняя половина отображает окно

базовой осциллограммы, а нижняя – растянутый фрагмент базовой осциллограммы. Нижняя часть основного окна называется окном фрагмента осциллограммы. Более светлая область базовой осциллограммы в верхней части экрана соответствует растянутому фрагменту в нижней части. Регуляторы горизонтального положения ^{©POSITION} и масштаба ^{©SCALE} изменяют положение фрагмента относительно базовой осциллограммы и его размер. Время, указанное в строке состояния в нижней части экрана, – это горизонтальный масштаб базовой осциллограммы, время, указанное внизу в

Используйте регулятор горизонтального положения POSITION для изменения положения фрагмента относительно базовой осциллограммы.

центре окна фрагмента, показывает горизонтальный масштаб фрагмента.

- Используйте регулятор горизонтального масштаба ^{OSCALE} для изменения разрешения фрагмента.
- Для изменения горизонтального масштаба базовой осциллограммы Вы должны выключить режим увеличения фрагмента.
- С момента отображения на экране растянутого фрагмента и базовой осциллограммы линейный размер делений сетки становится в два раза меньше, поэтому общее число вертикальных делений удваивается. Обратите внимание на изменение размера делений и вертикальный масштаб в строке состояния.

Быстрое переключение режима увеличения фрагмента

Режим увеличения фрагмента можно активировать не только через меню, но и нажатием на ручку регулятора горизонтального масштаба SCALE.

Режим Х-Ү

Этот формат полезен для изучения соотношения фаз двух сигналов.

Сигнал канала 1 используется для отклонения по горизонтальной оси (X), а сигнал канал 2 – по вертикальной оси (Y), осциллограф использует несинхронизованный режим регистрации, режим отображения на экране – в виде точек.

Рисунок 2-40. Вид экрана для режима Х-Ү

Перечисленные ниже функции не будут действовать при режиме Х-Ү:

- автоматические измерения;
- курсорные измерения;
- функции REF и MATH;
- режим увеличения фрагмента;
- режим отображения на экране в виде векторов;
- любые установки системы запуска.

Пояснения для системы запуска

Система запуска определяет момент начала регистрации данных и отображения формы сигнала осциллографом. При правильно настроенной системе запуска на экране будут четкие осциллограммы, а изображение формы сигнала будет стабильным.

До момента запуска осциллограф непрерывно регистрирует и сохраняет определенное количество данных достаточное для отображения формы сигнала слева от точки запуска. После выполнения условий запуска осциллограф продолжит регистрировать и сохранять данные в достаточном количестве для отображения формы сигнала справа от точки запуска.

Зона "TRIGGER" – элементов управления запуском на передней панели, включает в себя один регулятор и три кнопки:

©LEVEL: регулятор, который устанавливает уровень запуска, нажатие на его ручку приводит к установке нулевого уровня запуска.

50%: специальная кнопка единственной функции, при нажатии которой происходит установка уровня запуска в точку середины размаха сигнала запуска по вертикали.

<u>FORCE</u>: специальная кнопка, при нажатии которой происходит принудительный запуск, т.е. осциллограф воспринимает это действие как выполнение условий запуска. Она используется, главным образом, для настройки осциллографа при нормальном и однократном режимах запуска.

MENU: кнопка вызова на экран меню управления системой запуска.

Рисунок 2-41. Вид экрана с меню Trigger – управления системой запуска

Режимы запуска

Осциллограф предлагает 5 режимов запуска: по фронту, длительности импульса, по скорости нарастания, по видеосигналу, чередующийся.

- Edge: запуск по фронту происходит, когда входной сигнал пересекает выбранный уровень напряжения в выбранном направлении (нарастание, спад или произвольным фронтом).
- Pulse: запуск по длительности импульса; этот режим запуска используется, чтобы поймать импульсы определенной длительности.
- Video:
 запуск по видеосигналу используйте для запуска по полям или

 строкам от синхроимпульса стандартных видеосигналов.
- Slope: запуск по скорости нарастания производится осциллографом при выполнении заданных условий по длительности и уровню для нарастающего (спадающего) перепада сигнала.
- Alternate: поочередный запуск от каналов CH1 и CH2 для одновременного наблюдения двух несинхронизированных сигналов.

/нок 2-42	Таблица 2-20		
rigger	Меню	Установки	Комментарии
Mode		CH1	источник запуска – СН1
Edge		СН2	источник запуска – СН2
Source		CHZ	
CH1		EXT	источник запуска – внешний
Slope			сигнал
<u>_</u>		EXT/5	источник запуска – внешний
Sweep	Source		сигнал, ослабленный в 5 раз
AUIO		AC Line	источник запуска – напряжение
Set Up			сети
		_ ^	запуск по нарастающему фронту
	Slope	₹.	запуск по спадающему фронту
		ŤI	
		1+	
		Auto	регистрация сигнала даже при
			отсутствии сигнала запуска.
		Normal	регистрация сигнала только при
	Sween		выполнении условия запуска.
	Uncep	Single	однократная регистрация
			сигнала при выполнении условия
			запуска с последующей
			блокировкой.
	Set Un		переход к меню установок см.
			табл.2-38

Установки режима запуска по фронту (Edge)

Запуск по фронту происходит при выявлении точка с заданным уровнем на заданном (нарастающем или спадающем) фронте сигнала. Выбирайте этот режим, если необходим запуск по нарастающему фронту, спадающему фронту

Рису

или произвольному фронту.

Установки режима запуска по длительности импульса (Pulse)

Запуск по длительности импульса происходит при приходе пускового импульса определенной длительности. Нехарактерные сигналы могут быть выявлены выбором условий накладываемых на длительность импульса.

VICYTION 2 13			
Trigger	Меню	Установки	Комментарии
Mode		CH1	источник запуска – СН1
Pulse Source		CH2	источник запуска – СН2
CH1 When		EXT	источник запуска – внешний сигнал
	Source	EXT/5	источник запуска – внешний сигнал, ослабленный в 5 раз
			выбор условия сравнения:
		_ → [←	длительность положительного
			импульса меньше чем
		_ ► >→_	длительность положительного
			импульса больше чем
		+=+	длительность положительного
	When		импульса равна
		→	длительность отрицательного
			импульса меньше чем
		<u>+ ></u> +	длительность отрицательного
			импульса больше чем
		<u>+=</u> →	длительность отрицательного
			импульса равна
	Setting	Ð	установите требуемую
		<длительность	длительность импульса
		импульса>	

Рисунок 2-43 Таблица 2-21

Меню	Установки	Комментарии
	Auto	регистрация сигнала даже при
		отсутствии сигнала запуска.
	Normal	регистрация сигнала только при
Swoon		выполнении условия запуска.
Sweep	Single	однократная регистрация
		сигнала при выполнении условия
		запуска с последующей
		блокировкой.
Satila		переход к меню установок см.
Sec Up		табл.2-38

Рисунок 2-44 Таблица 2-22

ЗАМЕЧАНИЕ: установка требуемой длительности импульса регулируется в диапазоне 20нс ~ 10с. Регистрация сигнала будет произведена осциллографом при удовлетворении условия запуска.

Установки запуска по видеосигналу

Выберите режим запуска по видеосигналу для получения осциллограмм полей или строк видеосигналов в стандартах NTSC, PAL, или SECAM . Установите связь системы запуска по постоянному току (DC).

Trigger	Меню	Установки	Комментарии
Mode		CH1	источник запуска – СН1
Video Source		CH2	источник запуска – СН2
CH1	Source	EXT	источник запуска – внешний
Polarity			сигнал
		EXT/5	источник запуска – внешний
Sync			сигнал, ослабленный в 5 раз
All Lines		∐(нормальная	запуск происходит по
1/2	Polarity	полярность)	отрицательному синхроимпульсу
	rolancy	Л (обратная запуск происходит по полярность) положительному синхрои	запуск происходит по
			положительному синхроимпульсу
		All Lines	запуск по каждой строке
		Line Num	запуск по определенной строке
	Sync	Odd Field	запуск по нечетному полю
		Even Field	запуск по четному полю

Рисунок 2-45 Таблица 2-23 (часть первая)

Рисунок 2-46 Таблица 2-24 (часть вторая, выбран запуск по определенной строке)

ger	Меню	Установки	Комментарии
	Line Num	Ð	выбор для запуска
e Num		<номер строки>	определенного номера строки
1 lard	Standard	PAL/SECM NTSC	выбор видео стандарта
8C]	Set Up		переход к меню установок см. табл.2-39
p			

Рисунок 2-47 Таблица 2-25 (часть третья, выбран запуск по каждой строке, четным или нечетным полям)

Trigger	
2/2	
Standard	
NTSC	
Set Up	

	Меню	Установки	Комментарии
-	Standard	PAL/SECM NTSC	выбор видео стандарта
	Set Up		переход к меню установок см. табл.2-39

Важные замечания

Синхроимпульсы: при выборе нормальной полярности запуск всегда происходит при приходе отрицательных синхронизирующих импульсов. Если видеосигнал имеет положительные синхронизирующие импульсы, используйте установку обратной полярности.

Рисунок 2-48. Запуск по видеосигналу: синхронизация по строке

Рисунок 2-49. Запуск по видеосигналу: синхронизация по полю

Установки запуска по скорости нарастания (SLOPE)

Установки запуска по скорости нарастания позволяют осуществлять запуск осциллограф от положительного/отрицательного перепада сигнала определенной длительности и уровня.

,			
Trigger	Меню	Установки	Комментарии
Slope		CH1	источник запуска – СН1
Source		CH2	источник запуска – СН2
CH1	Source	EXT	источник запуска – внешний сигнал
		EXT/5	источник запуска – внешний сигнал,
Time			ослабленный в 5 раз
1.00us		₩	выбор условия по длительности
1/2		+×F	перепада
	When		
	When	+)> <u>+</u>	

		Ð	установка длительности перепада
	Time	<установка	
		длительности>	

Рисунок 2-50 Таблица 2–26 (часть первая)

Trigger	Меню	Установки	Комментарии	
2/2 Vertical Sweep Auto	Vertical		выберите уровень Т1 или/и Т2, задайте положение (значение) при помощи регулятора ©LEVEL	
	Sweep	Auto Normal Single	регистрация сигнала даже при отсутствии сигнала запуска. регистрация сигнала только при выполнении условия запуска. однократная регистрация сигнала при выполнении условия запуска с последующей блокировкой.	
	Set Up		переход к меню установок см. табл.2-38	

Рисунок 2-51 Таблица 2–27 (часть вторая)

ЗАМЕЧАНИЕ: длительность перепада регулируется в диапазоне 20нс ~ 10с. Регистрация сигнала будет произведена осциллографом при удовлетворении условия запуска. Вы можете изменять уровень T1, уровень T2 или оба вместе вращением регулятора уровня QLEVEL.

Поочередный запуск

При выборе режима поочередного запуска источниками сигнала запуска являются оба измерительных канала. Этот режим можно использовать для исследования двух независимых сигналов. Вы можете выбрать абсолютно разные установки режимов запуска для каждого канала, и дополнительно использовать запуск по фронту, длительности импульса, скорости нарастания и по видеосигналу. Информация об уровнях запуска двух каналов будет отображаться на экране вверху справа.

Trigger	Меню	Установки	Комментарии
Alternative		CH1	установки запуска для
Select	Select		канала СН1
CH1	1 Select	CH2	установки запуска для
Type			канала CH2
Edge	Туре	Edge	выберите запуск по фронту
Slope		F	запуск по нарастающему
<u> </u>			фронту
Set Up	Slope	F	запуск по спадающему фронту
		ţ↑	запуск по любому фронту
	Catilla		для перехода к меню
	Set Up		установок см. табл.2-38

Рисунок 2-52 Таолица 2–28 (режим запуска: по фронту (Еод
--

Рисунок 2-53	Таблица 2–29	(режим запуска:	: по длительности	импульса;
	часть первая)			

Trigger
Mode
Alternative
Select
CH1
Туре
Pulse
When
€_₩>₩
1/2
+

Меню	Установки	Комментарии
	CH1	установки запуска для
Select		канала СН1
Sciect	CH2	установки запуска для
		канала СН2
Type	Pulse	выберите запуск для канала по
Турс	T disc	длительности импульса
		выбор условий:
	_+<→L	длительность положительного
		импульса больше чем
		длительность положительного
		импульса меньше чем
	+ = +	длительность положительного
When		импульса равна
	Ŀ≽₽	длительность отрицательного
		импульса больше чем
	→	длительность отрицательного
		импульса меньше чем
]+= +	длительность отрицательного
	L	импульса равна

Рисунок 2-54 Таблица 2–30 (режим запуска: по длительности импульса; часть вторая)

Trigger
2/2
Setting
1.00us
Set Up

Меню Установки		Комментарии		
Setting	Ð	установите требуемую		
Secting	<длительность>	длительность импульса		
Set Up		для перехода к меню		
		установок см. табл.2-38		

Рисунок 2-55 Таблица 2–31 (режим запуска: по скорости нарастания; часть первая)

Trigger	Меню	Установки	Комментарии
Iternative		CH1	установки запуска для канала CH1
CH1	Select	CH2	установки запуска для канала CH2
Slope	Туре	Slope	выберите запуск для канала по скорости нарастания
vvnen → X+ 1/2	When	╪╵╪╵╪╵╪╵ ╼╷┶╵┶╵┶╵ ┶	выбор условия по длительности перепада

Таблица 2-32 (режим запуска: по скорости нарастания; час	сть
вторая)	

Trigger	Меню	Установки	Комментарии
2/2 Time	Time	€) <установка длительности>	установка длительності перепада
Vertical	Vertical		выберите уровень Т1 или/и Т2, задайте положение (значение) при помощи регулятора LEVEL
	Set Up		переход к меню установок см. табл.2-38
Trigger	Меню	Установки	Комментарии
------------------------------	----------	--------------------------	--
Alternative Select CH1	Select	CH1 CH2	установки запуска для канала CH1 установки запуска для
Туре			канала CH2
Video Polarity	Туре	Video	выберите запуск для канала по видеосигналу
		ſ	запуск происходит по
1/2		(нормальная	отрицательному
	Polarity	Полярноств)	запуск происходит по
		(обратная полярность)	положительному синхроимпульсу

Рисунок 2-57 Таблица 2–33 (режим запуска: по видеосигналу; часть первая)

Рисунок 2-58 Таблица 2–34 (режим запуска: по видеосигналу; часть вторая)

Trigger
2/2
Sync
Line Num
Line Num
Ð
Standard
NTSC
Set Up

г

	. ,			
Меню	Установки	Комментарии		
	All Lines	запуск по каждой строке		
	Line Num	запуск по определенной		
Sync	Odd Field	строке запуск по нечетному полю		
	Even Field	запуск по четному полю		
Line Num	¢	выбор для запуска		
	<номер строки>	определенного номера строки		
Standard	PAL/SECM NTSC	выбор видео стандарта		
Satur		для перехода к меню		
Secop		установок см. табл.2-39		

-

Set Up Coupling

Sensitivity

Holdoff ▲)

Holdoff Reset

Меню установок системы запуска

В меню установок Вы можете менять различные настройки системы запуска в соответствии с разными режимами ее работы. Сам вид меню установок запуска различен и зависит от меню режима запуска, из которого оно вызывалось. Если установлен запуск по фронту или длительности, то регулировке подлежат только длительность времени блокировки запуска.

Если установлен запуск по скорости нарастания или источником выбран не цифровой канал, то регулировке подлежат тип связи, установка гистерезис уровня запуска и длительность времени блокировки запуска. Для режима запуска по видеосигналу можно установить только гистерезис уровня запуска и длительность времени блокировки запуска.

При работе с чередующимся запуском Вы можете устанавливать различные настройки согласно разным режимам запуска.

Таблица 2-38 (меню установок: тип связи системы запуска, ее Рисунок 2-62 чувствительность и время блокировки запуска)

Меню	Установки	Комментарии	
		полное пропускание	
	DC	сигнала	
	LE Poioct	блокировка постоянной и	
Coupling	LF REJECT	НЧ компонент	
	HF Reject	блокировка ВЧ компоненты	
		блокировка постоянной	
	AC	компоненты	
	Ģ	установка гистерезиса	
Sensitivity	<установка	уровня запуска	
	чувствительности>		
	Ð	установка периода	
Holdoff	<установка времени	"мертвого" времени перед	
	запуска>	события запуска	
Holdoff		установка времени	
Reset		блокировки запуска 100нс	

Таблица 2-39 (меню установок: чувствительность системы запуска и время блокировки запуска)

Set Up Sensitivity	Меню	Установки	Комментарии
0.30div Holdoff	Sensitivity	сустановка чувствительности>	установка гистерезиса уровня запуска
Holdoff	Holdoff	сустановка времени блокировки запуска>	установка периода "мертвого" времени перед ожиданием следующего события запуска
1_	Holdoff Reset		установка времени блокировки запуска 100нс

Таблица 2-40 (меню установок: только время блокировки

Рисунок 2-63

запуска)		
Меню	Установки	Комментарии
Holdoff	сустановка времени блокировки запуска>	установка периода "мертвого" времени перед ожиданием следующего события запуска
Holdoff Reset		установка времени блокировки запуска 100нс

Временная блокировка запуска

Временная блокировка запуска поможет получить стабильную осциллограмму сложного комплексного сигнала, например пачки импульсов. Время блокировки запуска — это период, в течение которого система запуска осциллографа не реагирует на выполнение установленных условий запуска. По окончании этого периода осциллограф вновь приступит к оценке пускового сигнал для обнаружения выполнения условий запуска. Например, Вам нужно осуществить запуск осциллографа первым импульсом из пачки таких же импульсов, для этого установите время блокировки запуска равным длительности пачки импульсов.

Время блокировки запуска Рисунок 2-65. Блокировка запуска

Для использования блокировки запуска:

- 1. Нажмите кнопку <u>MENU</u> зоны запуска для отображения на экране соответствующего меню.
- 2. Нажмите кнопку **Set Up** для отображения на экране меню установок системы запуска.
- 3. Вращением многофункционального регулятора (**V**) изменяйте время блокировки запуска до получения устойчивой осциллограммы.
- 4. Нажатие кнопки **Holdoff Reset** вернет время блокировки запуска к начальному установленному производителем значению.

Важные замечания по системе запуска

1. Источник запуска

Для запуска осциллографа могут использоваться различные источники: входные каналы (CH1, CH2, напряжение сети (AC Line), внешний сигнал через вход запуска (EXT) или внешний сигнал с ослаблением в 5 раз (EXT/5).

- СН1 или СН2: это наиболее часто используемые источники запуска.
 Канал может быть выбран как источник запуска вне зависимости будет или нет, его сигнал отображается на экране.
- **EXT TRIG:** при регистрации сигналов поступающих на входы CH1 и CH2 запуск осциллографа может быть произведен от другого внешнего источника сигнала подключенного к специальному входу внешнего запуска. Например, Вы хотите использовать в качестве пускового сигнала внешний тактовый генератор или сигнал от другой части проверяемой схемы.

Режимы источника запуска EXT или EXT/5 используют внешний запускающий сигнал, поданный на вход осциллографа EXT TRIG. При выборе режима EXT сигнал используется непосредственно, диапазон уровня запуска для этого режима от +1.6B до -1.6B. При выборе режима EXT/5 сигнал, поступающий на вход EXT TRIG, ослабляется в 5 раз, что расширяет диапазон уровня запуска от +8B до -8B. Это позволяет использовать для запуска осциллографа сигнал большей амплитуды.

• AC Line: при регистрации сигналов, связанных с частотой питающей сети, например, от осветительного оборудования или источников питания, для синхронизации может быть использована сеть переменного тока. Сигнал для запуска осциллографа в этом случае поступает через его собственный сетевой шнур, поэтому не требуется дополнительное подключение входа запуска к источнику переменного тока. Если в качестве источника запуска выбрана AC Line, то осциллограф автоматически устанавливает для системы запуска связь по постоянному току (DC) и нулевой уровень запуска.

2. Режимы развертки

Режим развертки определяет поведение осциллографа все момента пуска. Осциллограф предлагает три режима развертки: автоматический (AUTO), ждущий (Normal) и однократная регистрация (Single).

AUTO: этот режим развертки позволяет получать изображение входного сигнала, даже когда не происходит выполнения условий запуска. Осциллограф ожидает выполнения условий запуска в течение определенного периода времени (определяется длительностью развертки) и при отсутствии требуемого пускового сигнала произведет автоматический запуск регистрации.

В случае такого автоматического запуска процесс отображения осциллограммы на экране не синхронизован с самим сигналом. Однако при появлении требуемого пускового сигнала изображение на экране становятся стабильным.

Любой фактор, вызывающий нестабильность формы сигнала, может быть обнаружен при этом режиме запуска развертки. Пример использования – проверка выхода источника питания.

ЗАМЕЧАНИЕ: при установке горизонтальной развертки медленнее 50мс/ДЕЛ. и автоматическом режиме развертки осциллограф не будет реагировать на пусковой сигнал.

- Normal: ждущий режим позволяет осциллографу регистрировать форму сигналов только при выполнении условий запуска. При отсутствии выполнения этих условий осциллограф ждет их появления и на экране сохраняется предыдущая осциллограмма, если она была зарегистрирована.
- Single: в режиме однократной регистрации после нажатия кнопки <u>RUN/STOP</u> осциллограф будет ожидать выполнения условий запуска. При их выполнении осциллограф произведет однократную регистрацию и остановится.

3. Типы связи

Тип связи системы запуска определяет, какие из компонент сигнала поступают в систему. Типы связи включают: связь по переменному току (AC), связь по постоянному току (DC), пропускание низких частот (HF Reject), пропускание высоких частот (LF Reject).

- AC: связь по переменному току блокирует компоненту постоянного тока.
- DC: при связи по постоянному току пропускаются все компоненты и переменного, и постоянного тока.
- LF Reject: связь через ФВЧ блокирует компонент постоянного тока и ослабляет все сигналы с частотой ниже 8кГц.
- **HF Reject:** связь через ФНЧ ослабляет все сигналы с частотой выше 150кГц.

4. Информация о сигнале до и после запуска

Данные о сигнале регистрируются как до, так и после момента запуска.

Положение момента запуска, как правило, устанавливается в горизонтальном центре экрана. При этом на всем экране можно наблюдать информацию о сигнале по 6 делений до и после момента запуска. Больше информации о сигнале до или после момента запуска можно получить, изменяя положение момента запуска С помощью регулятора горизонтального положения ^{©POSITION} (до 14 делений до запуска или вводя задержку запуска до 1с).

Эта возможность очень полезна тем, что Вы можете наблюдать события, предшествующие моменту запуска. Все что находится справа от точки запуска, называется информацией после запуска. Длительность регистрируемой информации относительно момента запуска (информация до и после запуска) зависит от выбранного коэффициента развертки.

5. Регулируемый гистерезис уровня запуска

Чтобы избежать влияния внешних шумов и получить устойчивый запуск, у осциллографов серии DS1000 дополнительно предусмотрен регулируемый гистерезис уровня схемы запуска с диапазоном регулировки от 0.1 деления до 1.0 деления. Допустим, установлен гистерезис 1.0 деления. — это означает, что схема запуска не будет реагировать на сигнал, если его размах не превышает установленный уровень запуска более 1.0 дел. Таким образом, можно избежать влияния помех.

Установки системы цифровой регистрации

Кнопка Acquire меню настроек системы цифровой регистрации находится в зоне "MENU", как показано на рис.2-66

Кнопка меню установок системы цифровой регистрации сигнала

Рисунок 2-66

Нажмите кнопку Acquire для вызова на экран меню настроек, показанного ниже.

Рисунок 2-67 Таблина 2-41

- • ·			
	Меню	Установки	Комментарии
Average Averages	Acquisition	Normal Average Peak Detect	обычный режим регистрации режим усреднения режим пикового детектора
	Averages	€) <2 до 256>	выбор числа регистраций при усреднении от 2 до 256; шаг выбора: удвоение
g Mem Rate emsa	Sampling	Real Time Equ-Time	режим выборки реального времени режим эквивалентной выборки
	MemDepth	Long Mem Normal	выбор объема памяти 512К (два канала) или 1М (один канал) выбор объема памяти 1К (два канала) или 2К (один канал)
	Sa Rate	<например: 100.0MSa>	отображение текущей частоты дискретизации

Отображаемая на экране осциллограмма будет изменяться в соответствии с настройками меню Acquire.

Рисунок 2-68. Сигнал, содержащий шумы, обычный режим регистрации.

Рисунок 2-69. Сигнал, содержащий шумы, режим усреднения

RIGOL

ЗАМЕЧАНИЕ:

- Выбирайте режим регистрации Real Time для исследования однократных или импульсных сигналов.
- Выбирайте режим регистрации Equ-Time для исследования периодических высокочастотных сигналов.
- Чтобы уменьшить отображаемый белый шум, выберите режим регистрации Average. Обратите внимание, что при этом режиме изображение на экране обновляется медленнее.
- Чтобы избежать наложений из-за дискретизации, выберите режим пикового детектора Peak Detect.
- Для наблюдения низкочастотного сигнала выберите режим "самописец" Roll в меню горизонтальной системы.

Рисунок 2-70. Осциллограмма сигнала, режим пикового детектора Режим пикового детектора Peak Detect представлен на рисунке выше, сигнал отображается в виде огибающих.

Остановка регистрации

В процессе регистрации сигнала осциллограф постоянно обновляет его осциллограмму на экране. После остановки регистрации на экране фиксируется последняя осциллограмма. Не имеет значения, в каком состоянии в данный момент находится осциллограф, вертикальные и горизонтальные регуляторы положения и масштаба действуют всегда.

Важные замечания

Режим выборки реального времени (Real Time): осциллографы серии DS1000 имеют номинальную частоту выборки в режиме реального времени до 1000Мвыб/с. При развертке 50нс или быстрее осциллограф для растяжки по горизонтали использует интерполяцию sin(x)/x.

Режим эквивалентной выборки (Equ-Time): также известен как режим повторной выборки; в этом режиме Вы можете получить горизонтальное разрешение до 40пс (что эквивалентно 25Гвыб/с). Этот режим хорошо подходит для исследования периодических сигналов, и неприменим для однократных или импульсных сигналов.

Обычный режим регистрации (Normal): в этом режиме осциллограф позволяет регистрировать сигнал с эквивалентной частотой выборки.

Режим усреднения (Average): чтобы удалить некоррелированный шум и увеличить точность измерений, используйте усреднение. Этот режим уменьшает белый или некоррелированный шум на осциллограмме. Осциллограмма в режиме усреднения представляет собой усреднение от 2 до 256 зарегистрированных осциллограмм сигнала.

Режим пикового детектора (Peak Detect**):** фиксирует максимальное или минимальное значения сигнала для каждой выборки. Поиск этих значений производится по большому числу регистраций сигнала.

Настройки экрана

Как показано на рис.2-71, кнопка Display меню настроек экрана находится в зоне "MENU".

Кнопка меню настроек экрана

Рисунок 2-71

Нажмите кнопку Display для вызова на экран меню настроек экрана.

Рисунок 2-72 Таблица 2-42

Display Type	Меню	Установки	Комментарии
Vectore		Vectors	отображение осциллограмм
Vectors			векторами; точки
Clear			зарегистрированных
			отсчетов соединяются
Persist	Type		отрезками или кривыми
OFF	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		интерполяции
Intensity		Dots	отображение осциллограмм
- U			в виде точек
56%			зарегистрированных
1/2			отсчетов
	Clear		очистить экран от всех
			осциллограмм
		Infinite	послесвечение; след
			предыдущих осциллограмм
	Persist		не удаляется с экрана, пока
	1 010100		послесвечение не будет
		0.55	выключено
		OFF	послесвечение выключено
		Ð	регулировка яркости
	Intensity	<значение в	осциллограмм
		процентах>	

Рисунок 2-73	Таблица 2-43		
Display	Меню	Установки	Комментарии
2/2 Grid Brightness 342 Menu Display Infinite Screen Normal	Grid		отображение на экране сетки и координатных осей сетка выключена сетка и координатные оси выключены
	Brightness	≺значение в процентах>	установка яркости сетки
	MenuDisplay	1s 2s 5s 10s 20s Infinite	установка времени показа меню; меню будет удалено с экрана через установленное время после последнего нажатия кнопки; Infinite – время показа меню не ограничено.
	Screen	Normal Invert	установка нормального режима установка режима инверсии цвета

Важные замечания

Режимы отображения осциллограмм: возможны два вида отображения векторами и точками. При векторном виде осциллограф соединяет точки, используя интерполяцию, как линейную, так и sin(x)/x. Интерполяция sin(x)/x наиболее эффективна при скорости развертки 50нс и быстрее для выборки реального времени.

Частота обновления: это важная характеристика цифровых осциллографов. Она подразумевает, сколько раз в секунду осциллограф производит обновление осциллограммы, влияет на возможность И исследования сигнала с помощью осциллографа.

Регулировка яркости осциллограмм

Если многофункциональный регулятор (💙) не задействован в установках меню, то с его помощью можно изменять яркость осциллограмм.

Сохранение и вызов осциллограмм или

настроек

На рис. 2-74 показано расположение кнопки меню Storage на передней панели.

меню Storage

		Кнопка вызова
	MENU	
Measure	Acquire	Storage
Cursor	Display	Utility

Рисунок 2-74

Нажмите кнопку Storage для вызова меню Storage. С помощью этого меню Вы можете сохранять и вызывать осциллограммы или настройки прибора, используя внутреннюю или внешнюю память. Во внешней памяти можно создавать и удалять файлы осциллограмм (формат BMP или CSV) и настроек. Система поддерживает режим ввода с клавиатуры на английском или китайском языках.

Меню Storage для осциллограмм и настроек прибора показано на рис. 2-75.

РИСУНОК 2-75	Таблица 2-44		
Storage	Меню	Установки	Комментарии
 Setups 		Waveform	сохранить или вызвать осциллограмму
Internal		Setups	сохранить или вызвать
External	Storage	Bit map	настроики прибора создать или удалить файл ВМР
		CSV	создать или удалить файл CSV
		Factory	начальные настройки производителя
Disk Mana.	Internal		перейти к меню операций с внутренней памятью (см. табл. 2-48)
	External		перейти к меню операций с внешней памятью (см. табл. 2-49)
	Disk Mana.		перейти к меню управления диском (см. табл.2-50)

~ . .

Начальные настройки производителя восстанавливаются следующим образом.

Рисунок 2-76	Таблица 2-45		
Storage	Меню	Установки	Комментарии
Factory		Waveform	сохранить или вызвать осциллограмму
		Setups	сохранить или вызвать настройки прибора
Load	Storage	Bit map	создать или удалить файл ВМР
		CSV	создать или удалить файл CSV
		Factory	начальные настройки
			производителя
Disk Mana.	Load		загрузите начальные настройки
	Loau		производителя
	Disk Mana.		перейти к меню управления диском (см. табл.2-50)

Меню для записи файлов в формате CSV выглядит следующим образом.

Рисунок 2-77 Таблица 2-46

Storage	Меню	Установки	Комментарии
		Waveform	сохранить или вызвать
Data Dauth			осциллограмму
Data Depth		Setups	сохранить или вызвать настройки
Displayed		D.1	прибора
Para Save	Storage	Bit map	создать или удалить фаил ВМР
OFF		CSV	выберите функцию создать или
			удалить файл CSV
External		Factory	начальные настройки
			производителя
Disk Mana.		Displayed	сохранить отображенные на
			экране данные текущей
	Data Depth		осциллограммы в CSV файл
		Maximum	сохранить все данные текущей
			осциллограммы в памяти в CSV
			файл
		On	включение или выключение
	Para Save	0.55	одновременного сохранения с
		Off	фаилом данных и фаила настроек в
			формате ТХТ под тем же именем
	External		переити к меню операции с
		$\langle \rangle$	внешнеи памятью (см. табл. 2-49)
	Disk Mana.		переити к меню управления
			диском (см. табл.2-50)

RIGOL

Меню для записи файлов в формате ВМР выглядит следующим образом.

Storage	Меню	Установки	Комментарии		
Dit mon		Waveform	сохранить или вызвать		
			осциллограмму		
Para Save		Setups	сохранить или вызвать		
OFF			настройки прибора		
External	Storage	Bit map	выберите функцию создать		
			или удалить файл ВМР		
		CSV	создать или удалить файл CSV		
		Factory	начальные настройки		
Dist. Marson			производителя		
Disk Maha.		On	включение или выключение		
	Para Save	0.55	одновременного сохранения с		
		Off	фаилом данных и фаила		
			настроек в формате тат под		
			перейти к меню операций с		
	External		внешней памятью (см. табл.		
			2-49)		
	Dick Mana		перейти к меню управления		
	DISK Malid.		диском (см. табл.2-50)		

Рисунок 2-78 Таблица 2-47

Внутренняя память

Нажмите кнопку Storage → Internal для вызова следующего меню.

Рисунок 2-79	Таблица 2-	48		
Internal Location	Меню	Установки	Комментарии	
- N		Int_00		
Elnt_01	Internal		выбор файлов во внутренней	
Load	Interna		памяти	
		Int_09		
Save			вызвать осциллограммы и	
	Load		настройки из выбранного	
			файла внутренней памяти	
			сохранить осциллограммы и	
	Save		настройки в выбранном файле	
			во внутренней памяти	

Внешняя память

Нажмите кнопки Storage → External для вызова следующего меню.

Рисунок 2-80	Таблица 2-49		
External	Меню	Установки	Комментарии
File		Path	переместить курсор в окно
	Explorer	Directory	пути, каталога или файла
New File		File	
			создать новый файл; курсор
Delete File			должен находится в окне пути
	New File		или файла;
Load	NewFolder		создать новый каталог; курсор
			должен находится в окне
			каталога
	Delete File		удалить файл
	Del Folder		удалить каталог
			загрузить файл осциллограмм
	Load		и/или настроек из памяти USB
			устройства

Вид экрана файловой системы:

Рисунок 2-81

Управление диском

Нажмите кнопки Storage → Disk Mana. для вызова следующего меню.

Рисунок 2-82	Таблица 2-50		
Disk Mana.	Меню	Установки	Комментарии
File		Path	переместить курсор в окно
	Explorer	Directory	пути, каталога или файла
New Folder		File	
			перейти в меню New Folder
<u>Delete File</u>	New Folder		(аналогично меню New File см.
			табл.2-13)
Load			удалить файл, курсор должен
1/2	Doloto Filo		находится в окне файлов;
-	Delete Folder		удалить каталог, курсор
			должен находится в окне
			каталога
			загрузить файл осциллограмм
			и/или настроек, файл маски
	Load		для функции допусковой
			проверки Pass/Fail
			(годен/негоден)

Рисунок 2-83	Таблица 2-51		
Disk Mana.	Монно		

Disk

/				
Disk Mana.	Меню	Меню Установки Комментарии		
2/2	Rename		перейти к меню переименования файла (см. табл.2-52)	
Rename	Disk info		отобразить информацию о диске	
Disk info	Format		форматирование устройства памяти	
Format		12		

Переименование

Нажмите кнопки Storage → Disk Mana. → Rename для вызова следующего меню.

Рис	сунок 2-84	1
	Rename	
		
	↓	
	OK	
	1	

Таблица 2-52			
Меню	Установки Комментарии		
+		переместить курсор вверх	
Ŧ		переместить курсор вниз	
×		удалить выделенный символ	
Ok		переименовать файл	

Вид экрана переименования выглядит следующим образом:

Начальные настройки производителя (Factory)

В памяти осциллографа всегда сохраняются исходные настройки производителя, которые в любое время могут быть загружены пользователем.

Выбор памяти (External/Internal)

Выберите тип памяти (внешняя/внутренняя) для сохранения/вызова текущих осциллограмм или настроек.

Вызов (Load)

Загрузка сохраненных ранее осциллограмм и настроек или начальных настроек производителя.

Сохранить (Save)

Сохранение осциллограмм и настроек.

ЗАМЕЧАНИЕ:

1. Функция **Save** при сохранении осциллограммы с использованием внутреннего формата осциллографа сохраняет в том же файле и его текущие настройки.

2. После изменения настроек осциллограф через 5 секунд автоматически сохранит их в памяти, после чего Вы можете выключить прибор. При последующем включении гарантируется загрузка этих сохраненных настроек. Помимо этого осциллограф позволяет хранить одновременно и загружать в любое время дополнительно до 10 настроек.

Использование меню утилит

На рис. 2-86 показано расположение кнопки меню утилит на передней панели.

Нажмите кнопку Utility для вызова меню утилит.

Рисунок 2-87 Таблица 2-53

Itilities	Меню	Установки	Комментарии		
Setting	I/O Sotting		вызов меню настроек		
Sound	1/O Setting		ввода/вывода		
♦×	Sound	🕀 (включен)	включение/выключение		
Counter	Sound		звукового сигнала		
OFF	Countor	OFF	включение/выключение		
inguage	Counter	ON	частотомера		
English		Simplified Chinese	выбор языка		
1/3		Traditional Chinese	(большее количество		
-		English	языков может быть		
	Language	Japanese	добавлено в более поздних		
		Français	версиях программного		
			обеспечения)		

Рисунок 2-88	Таблица 2-54				
Utilities	Меню	Установки	к	оммента	арии
2/3 Pass/Fail	Pass/Fail		вызов м допуско Pass/Fai	еню фуні вой пров I (ГОДЕН/	кции ерки /НЕГОДЕН)
Record	Record		вызов меню функ автоматического регистратора осциллогра		
Print set	Print set		вызов печати	меню	установок
-					

Рисунок 2-89 Табл

Таблица	2-55
---------	------

		Установки	Комментарии
3/3	Fast-Cal	OFF ON	включение/выключение быстрой калибровки
OFF	Self-Cal		выполнение автокалибровки
Self-Cal	Service		вызов меню сервисных функций
Service Proforence	Preference		вызов меню дополнительных функций

ЗАМЕЧАНИЕ

Быстрая калибровка: При включении функции быстрой калибровки, осциллограф будет калибровать вертикальное смещение при каждом запуске. **Автокалибровка**: осциллограф автоматически производит калибровку параметров вертикальной системы (для входов CH1, CH2 и EXT TRIG), горизонтальной системы и системы запуска.

Меню настроек ввода/вывода

Нажмите кнопки Utility → I/O Setting для вызова следующего меню.

Рисунок 2-90	Таблица 2-56		
I/O Setup RS-232	Меню	Установки	Комментарии
Baud 9600	RS-232 Baud	300 38400	установите скорость обмена порта RS-232: 300, 2400, 4800, 9600, 19200 или 38400

Меню дополнительных функций (Preference)

Нажмите кнопки Utility → **Preference** для вызова меню дополнительных функций.

Меню Установки Комментарии Screen saver 1 min выбор времени выключения экрана (min – минута, hour – час, OFF – функция выключена) Freen saver 5 hour час, OFF – функция выключена) Babfop базового уровня, относительно которого относительно которого Refer. Ground Center выбор базового уровня, относительно которого изображения аналоговых сигналов по вертикали при изменении масштаба		· • • • • • • • • • • • • • • • • • • •	
Screen saver 1 min выбор времени выключения . экрана (min – минута, hour – 5 hour час, OFF – функция OFF выключена) выбор базового уровня, относительно которого происходит растяжка изображения аналоговых сигналов по вертикали при изменении масштаба	0	Меню	
Screen saver экрана (min – минута, hour – час, OFF – функция 5 hour час, OFF – функция 0FF выключена) выбор базового уровня, относительно которого Ground происходит растяжка изображения аналоговых сигналов по вертикали при изменении масштаба			
Screen saver 5 hour час, OFF – функция OFF выключена) выбор базового уровня, относительно которого Ground происходит растяжка изображения аналоговых сигналов по вертикали при изменении масштаба	aver	Screen save	
OFF выключена) выбор базового уровня, относительно которого Ground происходит растяжка Center изображения аналоговых сигналов по вертикали при изменении масштаба		Scieen Save	
Expand Refer. Ground выбор базового уровня, относительно которого Ground происходит растяжка Vазображения аналоговых изображения аналоговых сигналов по вертикали при изменении масштаба			
Expand Refer. Ground Center			
Expand Refer. Ground Сепter Происходит растяжка изображения аналоговых сигналов по вертикали при изменении масштаба			
Expand Refer. Сепter изображения аналоговых сигналов по вертикали при изменении масштаба изменении масштаба			
сигналов по вертикали при изменении масштаба	kefer.	Expand Refer.	
изменении масштаба			
СН1 включение (Т)/выключение	I		
🔳 СН2 (💷) функции "липучка" для	1		
Stickykov MATH CH1, CH2, MATH, REF, уровня		Stickykey	
■ REF запуска и смещения запуска			
Trig. Lev.	1		
Trig. Pos.	I		
Classical выбор вида экрана			
Modern		Skin	
Tradition		SKIN	
Succinct			

Рисунок 2-91 Таблица 2-57

ЗАМЕЧАНИЕ

Screen saver: эта функция позволит увеличить продолжительность работы осциллографа при использовании автономного источника питания.

Expand refer.: при изменении вертикального масштаба (В/ДЕЛ.) для каналов Вы можете растягивать или сжимать сигнал относительно уровня земли (Ground) или центра экрана (Center). При выборе Ground и изменении вертикального масштаба (В/ДЕЛ.) для каналов положение уровня земли на экране будет оставаться неизменным.

RIGOL

Stickykey: при включенной функции "липучка" и изменении положения вертикального уровня (CH1, CH2, MATH, REF), уровеня запуска (Trig. Lev.) или смещения запуска (Trig. Pos.) курсор при прохождении нулевого положения будет останавливаться на нем до следующей регулировки.

Автокалибровка

Процедура автокалибровки настраивает внутренние схемы осциллографа для получения максимальной точности. Используйте эту функцию для калибровки вертикальной и горизонтальной систем осциллографа.

Для постоянного обеспечения максимальной точности следует выполнять процедуру автокалибровки при изменении температуры окружающей среды на 5 градусов и более.

Перед тем, как осуществить эту процедуру, проделайте следующее:

- 1. Отсоедините все пробники и кабели от входов каналов, в противном случае это может привести к ошибке или повредить осциллограф.
- 2. Нажмите кнопки Utility \rightarrow Self-Cal.

Меню автокалибровки показано на рис. 2-91

CAUTION:		
Disconnect erverything from all inputs		
CH1 Vertical System		
Press RUN key to start		
Press AUTO key to exit		

Рисунок 2-91

ЗАМЕЧАНИЕ:

До осуществления процедуры автокалибровки осциллограф должен непрерывно работать или быть прогрет **не менее 30 минут**.

Функция допусковой проверки Pass/Fail

Функция допусковой проверки Pass/Fail (ГОДЕН/НЕГОДЕН) позволяет отслеживать изменения сигнала, определяя, находится или нет сигнал внутри заранее заданной области маски.

Нажмите кнопки Utility → Pass/Fail для перехода к следующему меню.

	Таблица 2 50		
Pass/Fail	Меню	Установки	Комментарии
OFF Source CH1	Enable Test	ON OFF	включение/выключение функции проверки Pass/Fail (ГОДЕН/НЕГОДЕН)
Operate Msg Display OFF 1/2	Operate	•	проверка Pass/Fail (ГОДЕН/НЕГОДЕН) остановлена, нажмите эту кнопку для запуска идет проверка Pass/Fail (ГОДЕН/НЕГОДЕН), нажмите эту кнопку для остановки.
	Msg Display	ON OFF	включение/выключение отображения информации Pass/Fail (ГОДЕН/НЕГОДЕН)

Рисунок 2-92 Таблица 2-58

Рисунок	2-93	Таблица	2-59
,			

Pass/Fail
2/2
Output
Fail
Stop On Output
OFF
MaskSetting
1

Меню	Установки	Комментарии
	Fail	сигнал на выходе Pass/Fail
		появится при состоянии "Fail"
	Fail + 🛠	сигнал на выходе Pass/Fail
		появится при состоянии "Fail"
		сопровождаясь звуковым
		сигналом (при установке для
		звука - 🕸)
Output	Pass	сигнал на выходе Pass/Fail
		появится при состоянии
		"Pass"
	Pass + 🚭	сигнал на выходе Pass/Fail
		появится при состоянии
		"Pass" сопровождаясь
		звуковым сигналом (при
		установке для звука - 🛠)
	ON	остановка проверки при
		появлении сигнала на выходе
StopOnOutput		Pass/Fail
Stoponoutput	OFF	продолжение проверки при
		появлении сигнала на выходе
		Pass/Fail
Mask Setting		вызов меню установок маски

Создание, загрузка и сохранение маски

Нажмите кнопки Utility \rightarrow Pass/Fail \rightarrow Mask Setting для вызова следующего меню.

Рисунок 2-94	Таблица 2-60		
Mask X Mask	Меню	Установки	Комментарии
0.20diu Y Mask	X Mask	€) <Х дел.>	установите горизонтальный допуск формы сигнала (0.04дел4.00дел.)
Create Mask	Y Mask	€) <Ү дел.>	установите вертикальный допуск формы сигнала (0.04дел4.00дел.)
External 1/2	Create Mask		создать тестовую маску в соответствии с установленными ранее допусками
	Location	Internal External	выберите внутреннюю/ внешнюю память для сохранения файла маски

РИСУНОК 2-93	Рис	инок	2-95	
--------------	-----	------	------	--

Таблица 2-61 при сохранении во внутренней памяти

/lask	Меню	Установки	Комментарии
2/2			сохранить созданную
Save	Save		тестовую маску в фаиле внутренней памяти
	Load		загрузить тестовую маску из
Load			файла внутренней памяти
			перейти к меню Imp./Exp.
p./Exp.	Imp /Evp		(аналогично
<u> </u>	Imp./Exp.		соответствующему меню для
			REF см. табл. 2-10)

Mask	Меню	Установки	Комментарии
			перейти к меню Save
	Sava		(аналогично
Save	Save		соответствующему меню для
			REF см. табл. 2-12)
Load	Lood		перейти к меню Load
· · · · · · · · · · · · · · · · · · ·	LUau		см. Таблица 2-63
Import			перейти к меню Import
	Import		(аналогично
	Import		соответствующему меню для
			REF см. табл. 2-14)

Рисунок 2-96 Таблица 2-62 при сохранении во внешней памяти

Загрузка

Lo Exp F

Нажмите кнопки Utility → Pass/Fail → Mask Setting → Load для вызова следующего меню.

Рисунок 2-97 Таблица 2-63

Load	Меню	Установки	Комментарии
File	Explorer	Path Directory File	переместить курсор в окно пути, каталога или файла.
Load	Load		загрузите выбранный файл

ЗАМЕЧАНИЕ: функция допусковой проверки Pass/Fail (ГОДЕН/НЕГОДЕН) недоступна при выборе режима Х-Ү.

Подключение к выходу Pass/Fail

Выход Pass/Fail у осциллографов серии DS1000 имеет оптическую развязку. Для нормальной работы пользователю следует просто подключить к выходу собственную цепь.

Максимальный ток в подключаемой цепи не должен превышать 100мА, а максимальное напряжение не должно превышать 400В. Оптически изолированный выход, используемый в осциллографах данной серии, позволяет подключаться к пользовательской цепи без учета полярности.

Рисунок 2-99. Схема выхода Pass/Fail и подключение к нему.

Печать

Осциллографы серии DS1000 поддерживают функцию печати.

Нажмите кнопки Utility → Print Set для вызова следующего меню.

Рисунок 2-100 Таблица 2-64

Меню	Установки	Комментарии		
Print		выполнить печать		
_	ON	инвертировать при печати		
Inverted	OFF	не инвертировать при печати		
Palette	Grayscale	настройки цвета печати		
	COIOI			

Автоматический покадровый регистратор

Автоматический регистратор осциллограмм позволяет записывать кадрами форму входного сигнала для каналов CH1 и CH2 с максимальной длиной записи 1000 кадров. Процесс записи может быть активирован выходным сигналом функции допусковой проверки Pass/Fail (ГОДЕН/НЕГОДЕН), что делает описываемую функцию особенно полезной при регистрации аномальных сигналов длительных процессов без непосредственного визуального контроля. Автоматический покадровый регистратор: позволяет записывать осциллограммы сигнала через определенный интервал времени.

Нажмите кнопки Utility -> Record -> Mode -> Record для вызова следующего меню.

унок 2-101	Таблица 2-65		
Record	Меню	Установки	Комментарии
Record		Record	выберите меню режима записи
Source		Play back	вызов меню режима
CH1	Mode		воспроизведения
Interval	Mode	Storage	вызов меню режима
1.00ms			сохранения
End Frame		OFF	выключение регистратора
1 Operate	Source	CH1 CH2 P/F-OUT	выбор источника записи
		<pass fail=""></pass>	
	Interval	Ð	установка интервала времени
		<1.00мс-1000с>	между записью кадров
	End Frame	Ð	установка количества
		<1-1000>	записываемых кадров
	Operate	<ПУСК>	при остановленной записи нажать эту кнопку для пуска записи
		■ <СТОП>	в режиме записи нажать эту кнопку для ее остановки

Рис

Режим воспроизведения записанных кадров

Нажмите кнопки Utility \rightarrow **Record** \rightarrow **Mode** \rightarrow Play back для вызова следующего меню.

ICYHOR Z-IUZ	таолица 2-оо		
Record	Меню	Установки	Комментарии
Play back			при остановленном
Operate		<ПУСК>	воспроизведении нажмите эту
	Onerate		кнопку для пуска
Plav Mode	Operate		воспроизведения
			в режиме воспроизведения
Interval		<cto∏></cto∏>	нажмите эту кнопку для остановки
1.000		ţ	установить кольцевой режим
1/2	Play Mode		воспроизведения
		▶→■	установить режим однократного
			воспроизведения
	Interval	Ð	установка интервала времени
		<1.00мс-20с>	между кадрами

Рисунок 2-102 Таблица 2-66

Рисунок 2-103 Таблица 2-67

Меню	Установки	Комментарии	
Start Frame	€) <1-1000>	выбрать начальный кадр	
Current Frame	¢	выбрать текущий кадр для	
	<1-1000>	воспроизведения	
End Eramo	¢	выбрать конечный кадр	
	<1-1000>		

ЗАМЕЧАНИЕ: кнопкой <u>RUN/STOP</u> можно также остановить или начать заново отображение записанных кадров.

Режим сохранения Storage: позволяет сохранить записанные осциллограммы в долговременной памяти согласно выбранным кадрам. Нажмите кнопки Utility → Record → Mode → Storage для вызова следующего меню.

Рисунок 2-104	Таблица 2-68		
Record	Меню	Установки	Комментарии
≪ Storage	Start Frame	€) <1-1000>	выбрать начальный кадр для сохранения
End Frame	End Frame	€) <1-1000>	выбрать конечный кадр для сохранения
Location	Location	Internal External	выберите внутреннюю/ внешнюю память для сохранения
1/2			

Рису	/нок 2-105	Таблица 2-69 г	при сохранении во	внутренней памяти
		•		/ /

Record	Меню	Установки	Комментарии
2/2	Save		сохранить записанные кадры во внутренней памяти
Save	Load		вызвать записанные кадры из внутренней памяти
Load Imp./Exp.	Imp./Exp.		перейти к меню Imp./Exp. (аналогично соответствующему меню для
1			REF см. табл. 2-10)

Record	Меню	Установки	Комментарии
			перейти к меню Save
	Save		(аналогично
Save	Save		соответствующему меню для
			REF см. табл. 2-12)
Load	Lood		перейти к меню Load
	Load		см. Таблица 2-63
Import			перейти к меню Import
	Import		(аналогично
			соответствующему меню для
			REF см. табл. 2-14)

Рисунок 2-106 Таблица 2-70 при сохранении во внешней памяти

Сервисные функции

Нажмите кнопки Utility → Service для вызова следующего меню.

```
Рисунок 2-107 Таблица 2-71
```

Service	Меню	Комментарии
lystem Info	SystemInfo	отображение информации о приборе
Screen Test	ScreenTest	запуск программы проверки экрана
Color Test	Color Test	запуск программы проверки цвета
	Key Test	запуск программы проверки клавиатуры
Key Test		
1. Информация об осциллографе

Нажмите кнопку **SystemInfo** для отображения информации об осциллографе. Информация содержит данные о модели, времени включенного состояния, серийном номере, версии программного обеспечения и установленных в осциллограф модулях. Далее для выхода следуйте подсказке "<<Press Run key to exit>>" ("<<Для выхода нажмите кнопку 'RUN'>>").

2. Проверка экрана

Нажмите кнопку **ScreenTest** для запуска программы проверки экрана. Экран при каждом нажатии кнопки RUN/STOP становится поочередно красным, зеленым и синим. Вы можете проверить экран на наличие дефектов.

3. Проверка цвета

Нажмите кнопку **Color Test** для проверки цветопередачи экраном; тон, насыщенность, яркость для красного, зеленого и синего цвета можно регулировать вращением регулятора (𝔄) и затем фиксировать изменение нажатием на ручку (𝔄).

4. Проверка кнопок и регуляторов

Нажмите кнопку **Key Test** для запуска программы проверки кнопок и регуляторов. Прямоугольники представляют соответствующие кнопки передней панели, прямоугольники с двумя стрелками по бокам представляют регуляторы передней панели, квадраты представляют функцию нажатия на ручки регуляторов. Проверьте действие всех ручек и кнопок и соответствие отображения на экране их действия.

ЗАМЕЧАНИЕ:

- 1. При нажатии на кнопку соответствующий блок на экране должен временно стать красным, затем изменить свой цвета на зеленый. Далее в течение проверки цвет блоков останется измененным.
- 2. Для выхода следуйте подсказке "<<Press 'RUN' Key Three Times to Exit The Test>>" ("<<Для выхода трижды нажмите кнопку 'RUN'>>").

Выбор языка меню

Осциллографы серии DS1000 имеют многоязычное пользовательское меню, выберите язык по своему усмотрению.

Нажмите кнопки Utility → Language для выбора языка.

Автоматическое измерение

Кнопка <u>Measure</u> в зоне "MENU" включает функцию автоматического измерения. Инструкции, приведенные ниже, помогут Вам освоить использование мощной функции автоматического измерения осциллографов серии DS1000.

Кнопка меню автоматического измерения

Пояснения к меню

Нажмите кнопку <u>Measure</u> для вызова на экран меню автоматического измерения.

Осциллограф предлагает 20 параметров для автоматического измерения, включающих Vpp, Vmax, Vmin, Vtop, Vbase, Vamp, Vavg, Vrms, Overshoot, Preshoot, Freq, Period, Rise Time, Fall Time, Delay1-2 ±, Delay1-2 ±, +Width, -Width, +Duty, -Duty (пояснения к измеряемым величинам см. в Таблицах 2-72 – 2-78).

Всего функция автоматического измерения включает измерение: 10 параметров напряжения и 10 параметров времени.

NCYHOK 2-109	таолица 2-72		
Measure	Меню	Установки	Комментарии
CH1 Voltage	Source	CH1 CH2	выберите канал для автоматического измерения параметров сигнала
Time	Voltage		выбор параметров напряжения для измерения
Clear	Time		выбор параметров времени для измерения
Display All OFF	Clear		удалить результаты измерения с экрана
	Display All	ON	включить отображение всех результатов измерения
		OFF	выключить отображение всех результатов измерения

Рисунок 2-109 Таблица 2-72

Страница 1. Измерение параметров напряжения

-,			
€	Меню	Установки	Комментарии
1 געערג Vmax	ປາພານ ປາພານ ປາພານ ປາພານ ປາມານ Vpp ປາພານ Vtop	Vmax	измерение максимального напряжения формы сигнала
້ Vmin ‡_ງ∿_ງ∿_		Vmin	измерение минимального напряжения формы сигнала
Vpp 1 ـ استاست		Vpp	измерение размаха напряжения формы сигнала
Vtop •		Vtop	измерение напряжения вершины прямоугольного импульса

Рисунок 2-110 Таблица 2-73

Страница 2. Измерение параметров напряжения

Рисунок 2-111 Таблица 2-74

₩.	Меню	Установки	Комментарии
+JNJN Vbase ‡JNJN Vamn	Vbase Vbase Vavg Voltage Vavg Vavg Vavg Vavg	Vbase	измерение напряжения основания прямоугольного импульса
t Vavg t		Vamp	измерение амплитуды напряжения, разности между Vtop и Vbase
Vrms		Vavg	измерение среднего напряжения формы сигнала
		измерение среднеквадратического напряжения формы сигнала	

Страница 3. Измерение параметров напряжения

```
Рисунок 2-112 Таблица 2-75
```

₩	Меню	Установки	Комментарии
1 tour			измерение выброса на
vavy †n∿tn∿tt		Overshoot	вершине в процентах от
Vrms	Voltage	Overshoot	амплитуды прямоугольного
≠ <u></u> fin			импульса
Overshoot			измерение выброса у
±		Preshoot	основания в процентах от
Preshoot			амплитуды прямоугольного
			импульса

Страница 1. Измерение параметров времени

'			
[₩]	Меню	Установки	Комментарии
_t_t ∟ Period		Period	измерение периода сигнала
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Time	Freq	измерение частоты сигнала
		Rise Time	измерение длительности
Rise Time			нарастающего фронта
*		Fall Time	измерение длительности
Fall Time			спадающего фронта

Рисунок 2-113	Таблица	2-76
---------------	---------	------

Страница 2. Измерение параметров времени

Рисунок 2-114 Таблица 2-77

₩	Меню	Установки	Комментарии
+ VA(idth		+\\/idth	измерение длительности
		TVIUUI	положительного импульса
- Width		_\\/idth	измерение длительности
-ਦ_ਦਾ -	맞도 uty 주그 Time uty	-wiatri	отрицательного импульса
+ Duty		+Duty	измерение относительной
			длительности
- Duty			положительного импульса
			измерение относительной
		-Duty	длительности
			отрицательного импульса

RIGOL

Страница 3. Измерение параметров времени

Рисунок 2-115 Таблица 2-78

*⊉_•_	Меню	Установки	Комментарии
-t_t +Duty T_f_ -Duty	Time	Delay1→2 1	измерение задержки нарастающего фронта канала 2 относительно канала 1
 Delay1→2 f		Delay1→2₹	измерение задержки спадающего фронта канала 2 относительно канала 1
Delay 1→2 🖁			

ЗАМЕЧАНИЕ Результаты автоматических измерений будут отображаться в нижней части экрана. Одновременно могут отображаться не более трех величин. При недостатке места следующий выбранный параметр измерения сдвинет параметр расположенный слева за экран.

Последовательность действий при использовании автоматического

измерения

1. Выберите канал для измеряемого сигнала. Вы можете по желанию выбрать канал CH1 или CH2.

Нажмите кнопки: Measure → Source → CH1 или CH2.

- 2. Чтобы посмотреть все данные измерений, установите **Display All** в состояние **ON**. 18 параметров автоматического измерения будут отображены на экране.
- Выберите меню для измерения параметров времени или напряжения. Выбрать соответствующее меню Вы можете нажатием кнопок: Measure→Voltage или Time.
- Для отображения интересующего значения в нижней части экрана выберите Vmax, Vmin,....., Delay1→2 ¹ и нажмите на ручку многофункционального регулятора или функциональную кнопку справа от соответствующего пункта меню.

Если данные представлены в виде "*****", значит, при данных условиях параметр не может быть измерен.

5. Для очистки экрана от выбранных параметров и результатов измерений нажмите **Clear**. Все значения автоматического измерения исчезнут с экрана.

Автоматическое измерение параметров напряжения

Осциллографы серии DS1000 предоставляют возможность автоматического измерения следующих параметров напряжения: Vpp, Vmax, Vmin, Vavg, Vamp, Vrms, Vtop, Vbase, Overshoot и Preshoot. На рис. 2-117 на примере импульса показывает определение некоторых параметров.

Рисунок 2-117

RIGOL

Vpp: размах напряжения сигнала.

- **Утах:** максимальное напряжение сигнала. Набольшее напряжение, полученное при регистрации всей осциллограммы сигнала.
- Vmin: минимальное напряжение сигнала. Наименьшее напряжение, полученное при регистрации всей осциллограммы сигнала.
- **Vamp:** амплитуда напряжения сигнала. Напряжение между уровнями Vtop и Vbase равно разности напряжений между ними.
- **Vtop:** напряжение вершины импульса, используется для прямоугольного импульсного сигнала.
- **Vbase:** напряжение основания импульса, используется для прямоугольного импульсного сигнала.
- Overshoot: положительный выброс на вершине, определяется как (Vmax-Vtop)/Vamp x100%, используется для прямоугольного импульсного сигнала.
- **Preshoot:** отрицательный выброс у основания, определяется как (Vmin-Vbase)/Vamp x100%, используется для прямоугольного импульсного сигнала.
- **Vavg:** среднее арифметическое значение напряжения для всей осциллограммы сигнала.
- Vrms: среднеквадратическое значение напряжения для всей осциллограммы сигнала.

Автоматическое измерение параметров времени

Осциллографы серии DS1000 предоставляют возможность автоматического измерения следующих параметров времени: частота (Freq), период (Period), длительность нарастающего фронта импульса (Rise Time), длительность спадающего фронта импульса (Fall Time), длительность положительного (+Width), импульса длительность отрицательного импульса (-Width), относительная длительность положительного импульса (+Duty), относительная длительность отрицательного импульса (-Duty), задержка нарастающего фронта канала 2 относительно канала 1 (Delay1→2f), задержка спадающего фронта канала 2 относительно канала 1 (Delay $1 \rightarrow 2 \pm$).

На рис. 2-118 на примере импульса показывает определение некоторых параметров.

Рисунок 2-117

- **Rise Time:** длительность нарастающего фронта первого импульса осциллограммы это время, в течение которого импульсный сигнал изменяется от 10% до 90% своей амплитуды.
- Fall Time: длительность спадающего фронта первого импульса осциллограммы это время, в течение которого импульсный сигнал изменяется от 90% до 10% своей амплитуды.
- **+Width:** длительность первого положительного импульса осциллограммы на уровне 50% амплитуды.
- -Width: длительность первого отрицательного импульса осциллограммы на уровне 50% амплитуды.
- **Delay 1→2f**: время задержки между нарастающими фронтами двух сигналов разных каналов.
- **Delay 1→2**⁺: время задержки между спадающими фронтами двух сигналов разных каналов.
- +Duty: относительная длительность первого положительного импульса осциллограммы, определяется как +Width/Period
- **-Duty:** относительная длительность первого отрицательного импульса осциллограммы, определяется как -Width/Period.

Курсорные измерения

На рис. 2-119 показано расположение кнопки меню курсорных измерений Cursor на передней панели.

измерений

Функция курсорные измерения имеет три режима: ручной (Manual), слежение (Track) и иллюстрации автоматического измерения (Auto).

- Ручной: в этом режиме на экране курсоры отображаются в виде двух параллельных линий. Вы можете перемещать линии курсоров для выбора измеряемых интервалов напряжения или времени на осциллограмме. Измеренные значения будут отображаться в рамках рядом с меню. Прежде чем использовать курсоры, рекомендуем Вам убедиться в правильности выбора источника сигнала для измерения.
- 2. Слежение: в этом режиме курсоры на экране отображаются в виде двух перекрестий. Перекрестье курсора устанавливает свое положение на линии сигнала автоматически. Вы можете перемещать курсоры в горизонтальном направлении вдоль линии осциллограммы сигнала вращением многофункционального регулятора (♥). Осциллограф отображает значения координат в рамках рядом с меню.
- Иллюстрации автоматического измерения: этот режим визуально отображается только совместно с режимом автоматического измерения. Осциллограф автоматически будет отображать с помощью курсоров физический смысл измеряемых параметров.

ЗАМЕЧАНИЕ: при режим иллюстрации автоматического измерения функции курсорных измерений не действует, если не включен режим автоматического измерения осциллографа.

Меню и процедуры курсорных измерений

1. Ручной режим

Cursors	Меню	Установки	Комментарии
Manual	Mode	Manual	выберите ручной режим курсорных измерений
CurA	Туре	X Y	курсоры отображаются как вертикальные линии для измерения горизонтальных параметров курсоры отображаются как горизонтальные линии для измерения вертикальных параметров
	Source	CH1 CH2 MATH FFT	выберите источник сигнала для измерения

Рисунок 2-120 Таблица 2-79

В этом режиме осциллограф определяет значения координат курсоров по Y или по X и вычисляет разницу между координатами курсоров.

Последовательность действий для осуществления курсорных измерений в ручном режиме

- 1. Выберите ручной режим курсорных измерений нажатием кнопок Cursor → **Mode** → Manual.
- 2. Выберите источник для измерения нажатием кнопок:

Cursor→Source→CH1, CH2, MATH, FFT

ЗАМЕЧАНИЕ: при выборе в качестве источника МАТН результаты имеют размерность "d"(деление).

- 3. Выберите тип курсоров нажатием кнопок Cursor → **Туре** → X или Y.
- 4. Перемещайте курсоры для изменения расстояния между ними (подробнее в следующей таблице).

Таблица 2-80

Курсор	Приращение	Действие		
	Х	вращение многофункционального		
		регулятора (�) перемещает курсор А по		
Kypcop A		горизонтали		
курсор А	Y	вращение многофункционального		
		регулятора (🍤) перемещает курсор А по		
		вертикали		
	Х	вращение многофункционального		
		регулятора (🍤) перемещает курсор В по		
Kypcop B		горизонтали		
курсор в	Y	вращение многофункционального		
		регулятора (🍤) перемещает курсор В по		
		вертикали		

ЗАМЕЧАНИЕ: соответствующий курсор будет перемещаться, только если функция его перемещения выбрана в меню на экране.

- 5. Интерпретация отображаемых результатов измерения
- **CurA** положение курсора при измерении времени исчисляется от центра экрана;

положение курсора при измерении напряжения исчисляется от уровня земли канала источника.

СигВ аналогично указанному выше для курсора А.

При измерении горизонтального интервала с помощью вертикальных курсоров А и В:

- △X интервал времени соответствующий горизонтальному промежутку между курсорами А и В, базовая единица размерности – секунда.
- 1/△Х обратная величина, единицы размерности: Нz (Гц), kHz (кГц), MHz (МГц), GHz (ГГц).

При измерении вертикального интервала с помощью горизонтальных курсоров А и В:

△Y напряжение соответствующее вертикальному промежутку между курсорами А и В, базовая единица размерности – вольт. **ЗАМЕЧАНИЕ:** окно результатов курсорных измерений автоматически переместится к правому верхнему углу экрана, если меню курсорных измерений или другое меню будет скрыто.

Важные замечания

Тип Y: курсоры Y отображаются на экране горизонтальных линий и предназначены для измерения вертикальных параметров. Обычно они используются для измерения напряжения. Если источником для измерения выбрана функция, то в этом случае размерность при измерении определяется этой функцией.

Тип X: курсоры X отображаются на экране в виде вертикальных линий и предназначены для измерения горизонтальных параметров. Обычно они используются для измерения времени от момента запуска. Если источником для измерения выбрано FFT, то в этом случае ось X имеет размерность частоты.

RIGOL

2. Режим слежения

Cursors	Меню	Установки	Комментарии
	Mode	Track	выберите режим слежения
Cursor A CH1 Cursor B	Cursor A	CH1 CH2 None	установить курсор A на сигнал CH1, CH2 или выключить курсор A
CH1	Cursor B	CH1 CH2 None	установить курсор В на сигнал CH1, CH2 или выключить курсор В
CurB €	CurA	Ð	При выборе курсора А вращение многофункционального регулятора (•) перемещает его по горизонтали
	CurB	Ð	При выборе курсора В вращение многофункционального регулятора (•) перемещает его по горизонтали

В режиме слежения (Track) курсоры перемещаются вместе с выбранной в качестве источника осциллограммой сигнала.

Последовательность действий для осуществления курсорных измерений в режиме слежения

- Выберите режим слежения курсорных измерений нажатием кнопок: Cursor
 → Mode → Track.
- 2. Выберите источник измерения для курсора А и курсора В нажатием кнопок:

Cursor \rightarrow Cursor A или Cursor B \rightarrow CH1 , CH2 или None.

3. Перемещайте курсоры для изменения их горизонтального положения (подробнее в следующей таблице). Таблица 2-82

Курсор	Действие		
Курсор А	вращение многофункционального регулятора (💙) перемещает		
	курсор А по горизонтали		
Курсор В	вращение многофункционального регулятора (💙) перемещает		
	курсор В по горизонтали		

ЗАМЕЧАНИЕ: горизонтальное перемещение соответствующего курсора возможно, только если функция его перемещения выбрана в меню режима слежения на экране.

4. Интерпретация отображаемых результатов измерения

- A->X= положение курсора А вдоль оси Х исчисляется от центра экрана;
- **A->Y=** положение курсора А вдоль оси Y исчисляется от уровня земли канала источника.
- **B->X=** положение курсора В вдоль оси X исчисляется от центра экрана;
- **B->Y=** положение курсора В вдоль оси Y исчисляется от уровня земли канала источника.
- △**X** интервал времени соответствующий горизонтальному промежутку между курсорами А и В, базовая единица размерности секунда.
- 1/△Х обратная величина, единицы размерности: Hz (Гц), kHz (кГц), MHz (МГц), GHz (ГГц).
- △Y напряжение соответствующее вертикальному промежутку между курсорами А и В, базовая единица размерности – вольт.

RIGOL

3. Режим иллюстрации автоматического измерения

Рисунок 2-122 Таблица 2-83

Cursors	Меню	Установки	Комментарии
	Mode	Auto	отображение курсоров, применительно к текущей функции автоматического измерения (см. следующий рисунок)

Рисунок 2-123. Режим автоматического измерения при включенном режиме Auto курсорных измерений

Курсор не будет отображаться на экране, если не было выбрано ни одного измеряемого параметра в меню автоматического измерения. Осциллограф будет перемещать курсор автоматически при измерении любого из 20 параметров меню автоматического измерения.

Применение кнопок зоны управления пуском

Зона RUN CONTROL содержит кнопки: AUTO (автоматический выбор настроек) и RUN/STOP.

Автоматический выбор настроек

Эта функция производит автоматический выбор настроек осциллографа для облегчения получения осциллограммы входного сигнала. При нажатии кнопки AUTO появится следующее меню.

Рисунок 2-124 Таблица 2-84

AUTO	Меню	Установки	Комментарии
ulti-cycle	JUUL		нажмите для отображения
JIII Cycle	Multi-Cycle		нескольких периодов сигнала
			на экране
			нажмите для отображения
all Edge	Single Cycle		одного периода сигнала на
			экране
			нажмите для отображения
	Rise Edge		нарастающего фронта
			сигнала; длительность
			фронта будет измерена
			автоматически
	Fall Edge		нажмите для отображения
			спадающего фронта сигнала;
			длительность фронта будет
			измерена автоматически
			нажмите для отмены всех
	С <возврат>		автоматически
			установленных настроек,
			осциллограф вернется к
			предыдущему состоянию

Перечень автоматически устанавливаемых настроек

После нажатия кнопки <u>AUTO</u> осциллограф сделает следующие основные настройки.

Таблица 2-85

Меню	Настройки
Режим развертки (Time Base)	Y-T
Режим регистрации (Acquisition)	Normal
Связь канала по входу (Coupling)	закрытый (AC) или открытый (DC) в
	зависимости от характера сигнала
Вертикальный масштаб	регулируется в зависимости от характера
(Вольт/ДЕЛ.)	сигнала
Volts/Div	Coarse
BW Limit	OFF
Invert	OFF
Горизонтальное положение	центр экрана
Горизонтальный масштаб	максимально короткая развертка в
(время/ДЕЛ.)	зависимости от сигнала
Режим запуска (Mode)	Edge
Источник запуска	автоматическое определение канала с
	присутствующим входным сигналом
Связь системы запуска	DC – по постоянному току
Уровень запуска	середина размаха сигнала
Режим развертки (Sweep)	Auto (автоматический)
©POSITION	режим регулировки задержки пуска

Кнопка RUN/STOP

Эта кнопка позволяет запустить или остановить процесс регистрации формы сигнала.

ЗАМЕЧАНИЕ: в состоянии остановки вертикальный и горизонтальный масштабы осциллограммы можно регулировать в определенных пределах. То есть, можно увеличивать/уменьшать размер осциллограммы сигнала в вертикальном или горизонтальном направлении. При горизонтальной развертке – 50 мс/ДЕЛ. или быстрее горизонтальная развертка может изменяться на 5 шагов вверх или вниз.

Раздел 3. Примеры применения

Пример 1. Выполнение простых измерений

В этом примере необходимо получить осциллограмму неизвестного сигнала, измерить его частоту и размах.

Для быстрого получения осциллограммы сигнала выполните следующие действия:

1. Установите ослабление переключателем на пробнике и в меню канала осциллографа – 10X.

- 2. Подайте сигнал в канал СН1, используя пробник.
- 3. Нажмите кнопку AUTO.

Осциллограф автоматически настроит вертикальную, горизонтальную системы и систему запуска для получения наилучшего результата. Для оптимизации отображения формы сигнала Вы можете затем дополнительно регулировать любой из параметров этих систем вручную в соответствии с Вашими требованиями.

Выберите режим автоматического измерения

Осциллограф позволяет выполнять автоматические измерения для большинства видов сигналов. Чтобы измерить частоту и размах сигнала, выполните следующие действия:

1. Измерение размаха сигнала

Нажмите Measure \rightarrow Source \rightarrow CH1 для выбора источника сигнала для измерения.

Нажмите **Voltage** → Vpp для выбора измерения размаха сигнала, результат сразу появится на экране.

2. Измерение частоты сигнала

Нажмите Measure \rightarrow Source \rightarrow CH1 для выбора источника сигнала для измерения.

Нажмите **Time** → Freq для выбора измерения частоты сигнала, результат сразу появится на экране.

ЗАМЕЧАНИЕ: отображаемые на экране частота, период и размах обновляются периодически.

Пример 2. Измерение задержки сигнала

В этом примере необходимо проверить входной и выходной сигналы схемы и определить время задержки сигнала. Сначала установите ослабление переключателем на пробниках и в меню каналов осциллографа – 10Х; подключите пробник канала CH1 к входу схемы, а пробник канала CH2 к ее выходу.

Выполните следующие действия:

- 1. Получение изображения сигналов (канал СН1 и канал СН2)
- 1) Нажмите кнопку AUTO
- 2) При необходимости дополнительно отрегулируйте вертикальный и горизонтальный масштаб, вращением регуляторов ^{©SCALE}, для получения удобного для измерения изображения сигналов.
- 3) Нажмите кнопку <u>CH1</u> для выбора канала CH1 и вращением регулятора вертикального положения ^(C) РО<u>SITION</u> выберите нужное положение формы сигнала канала CH1.
- 4) Нажмите кнопку CH2 для выбора канала CH2 и вращением регулятора вертикального положения ^(C)POSITION</sup> выберите нужное положение формы сигнала канала CH2.
- 2. Измерение времени задержки при прохождении сигнала через цепь

Автоматическое измерение задержки:

нажмите Measure \rightarrow Source \rightarrow CH1 для выбора источника для измерения;

Нажмите Time для выбора типа измерения;

Выберите Delay1→2**f** для отображения результата на экране.

На следующем рисунке показан вид экрана при измерении времени задержки сигнала.

Рисунок 3-1. Измерение задержки между сигналами

Пример З. Регистрация одиночного сигнала

При регистрации одиночного события необходимо предварительно знать некоторые параметры сигнала, чтобы правильно выбрать установку уровня и режима запуска. Для примера возьмем одиночный сигнал, полученный от ТТЛ логики, для его регистрации нужно установить уровень запуска – 2В и выбрать режим запуска по нарастающему фронту.

Описанные далее действия покажут Вам, как использовать осциллограф для регистрации одиночного сигнала.

- 1. Установите ослабление переключателем на пробнике и в меню канала осциллографа 10X.
- 2. Сделайте следующие настройки системы запуска.
- Нажмите кнопку MENU в зоне "TRIGGER" для вызова на экран меню запуска

 Trigger.
- Нажмите Mode и выберите режим запуска Edge
- Нажмите Slope для выбора нарастающего фронта
- Нажмите **Source** и выберите CH1
- Нажмите Sweep и выберите Single
- Нажмите Set Up → Coupling и выберите DC

RIGOL

- 3. Вращением регуляторов вертикального и горизонтального масштабов SCALE
 установите подходящий масштаб для отображения сигнала.
- 4. Вращением регулятора <a>Object установите требуемый уровень запуска.
- 5. Нажмите кнопку <u>RUN/STOP</u> для включения режима ожидания пускового сигнала. При последующем появлении пускового сигнала, удовлетворяющего настройкам системы запуска, будет произведена однократная регистрация, и полученные данные появятся на экране.

Эта функция поможет легко зарегистрировать одиночный непериодический сигнал, например, появление в каком-либо сигнале шума с большой амплитудой; установите уровень запуска немного выше обычного для регистрации базового сигнала, нажмите кнопку RUN/STOP и ждите. При появлении шума, осциллограф зарегистрирует форму сигнала до и после момента запуска. Используя регулятор горизонтального положения ©POSITION, и изменяя положение момента запуска, Вы можете установить отрицательную задержку запуска. Это позволит Вам посмотреть форму сигнала предшествующую моменту появления шума.

Пример 4. Снижение влияния белого шума

Если сигнал, поданный на вход осциллографа, имеет высокий уровень шума (рисунок 3-2), то Вы можете настройками осциллографа уменьшить уровень шума на осциллограмме сигнала, избегая при этом искажения самого сигнала.

Рисунок 3-2

- 1. Установите ослабление переключателем на пробнике и в меню канала осциллографа 10X.
- 2. Подайте сигнал на вход осциллографа и получите его устойчивое изображение.
- Улучшить запуск можно с помощью установки типа связи по входу системы запуска.
 - (1) Нажмите кнопку MENU в зоне "TRIGGER" для вызова на экран меню запуска.
 - (2) Нажмите Set Up → Coupling → и выберите LF Reject или HF Reject

HF Reject (подавление высоких частот) добавляет фильтр нижних частот со спадом на 3дБ при 150кГц. Используйте HF Reject для устранения высокочастотного шума, например, от AM или FM радиостанций из пускового сигнала.

LF Reject (подавление низких частот) добавляет фильтр высоких частот со спадом на ЗдБ при 8кГц. Используйте LF Reject для устранения низкочастотных сигналов, например, шум с частотой сети питания из пускового сигнала.

- 4. Снизить влияние шума можно выбором типа регистрации или регулировкой яркости осциллограммы сигнала.
 - (1) Если в сигнале присутствует шум и осциллограмма сигнала выглядит смазанной, в этом случае, Вы можете выбрать режим усреднения при регистрации. В этом режиме форма сигнала на осциллограмме будет четкой и можно легко наблюдать сигнал и производить измерения.

Для использования усреднения при регистрации, проделайте следующее.

- Нажмите кнопки Acquire → Acquisition → Average
- Нажмите функциональную кнопку Averages, чтобы выбрать число усреднений для наилучшего устранения шума на осциллограмме сигнала. Можно выбирать число усреднений от 2 до 256. (см. рисунок 3-3)

- (2) Визуально уменьшить шумы можно также с помощью снижения яркости сигнал
- **ЗАМЕЧАНИЕ:** скорость обновления осциллограммы будет снижена при включении режима регистрации с усреднением.

Пример 5. Применение курсорных измерений

20 наиболее часто используемых параметров осциллограф может измерять автоматически. Значение этих и другие параметры можно определить также, используя курсорные измерения. Вы можете использовать курсоры для быстрого измерения параметров времени или напряжения сигнала.

Измерение частоты первой гармоники

Для измерения резонансной частоты сигнала используйте запуск по нарастающему фронту и проделайте следующее.

- 1. Нажмите кнопку Cursor для вызова на экран меню курсорных измерений.
- 2. Нажмите Mode для выбора режима Manual.
- 3. Нажмите Туре для выбора режима Х.
- 4. Вращением многофункционального регулятора (♥) совместите курсор A с основным пиком сигнала.

5. Вращением многофункционального регулятора (�) совместите курсор В с ближайшим к основному пиком сигнала.

Рисунок 3-4

После этого Вы увидите на экране интересующие значения интервала времени между курсорами и частоты.

Измерение амплитуды первой гармоники

Для измерения амплитуды первой гармоники, пожалуйста, проделайте следующие действия:

- 1. Нажмите кнопку Cursor для вызова на экран меню курсорных измерений.
- 2. Нажмите Mode для выбора режима Manual.
- 3. Нажмите Туре для выбора режима Ү.
- 4. Вращением многофункционального регулятора (♥) совместите курсор A с основным пиком сигнала.
- 5. Вращением многофункционального регулятора (�) совместите курсор В с ближайшим к основному пиком сигнала.

В окне курсорных измерений Вы увидите следующие результаты (см. рис. 3-5).

- CurA: напряжение, соответствующее уровню курсора А
- CurB: напряжение, соответствующее уровню курсора В

△Y: напряжение, соответствующее разност**и** уровней курсоров (размах сигнала)

Рисунок 3-5

Пример 6. Применение режима Х-Ү

Наблюдение изменения фазы сигнала четырехполюсником

Для наблюдения и регистрации изменения фазы в цепи подключите осциллограф к ее входу и выходу.

Для отображения осциллографом входного и выходного сигналов в режиме X-Y проделайте следующее.

- 1. Установите ослабление переключателем на пробниках и в меню каналов осциллографа 10X.
- 2. Подключите пробник первого канала к входу четырехполюсника, а пробник второго канала к его выходу.
- 3. Если сигналы каналов не отображаются на дисплее, нажмите кнопки <u>CH1</u> и <u>CH2</u>.
- 4. Нажмите кнопку AUTO.
- 5. С помощью регулятора вертикального масштаба ^{©SCALE} установите примерно одинаковый вертикальный размер изображения сигналов обоих канала.

- 6. Нажмите кнопку <u>MENU</u> в зоне "HORIZONTAL" для вызова на экран соответствующего меню.
- 7. Нажмите функциональную кнопку **Time Base** и выберите режим X-Y.

На экране осциллографа появится фигура Лиссажу соответствующая входным и выходным характеристикам четырехполюсника.

- 8. Добейтесь нужного изображения с помощью вертикальных регуляторов ③SCALE и ③POSITION.
- 9. Примените метод эллипса для определения разность фаз между сигналами двух каналов.

(См. рисунок 3-6)

Рисунок 3-6

Sinφ=A/B или **C/D**,

где ф – сдвиг фаз (в градусах) между двумя сигналами.

Из формулы приведенной выше следует:

$\phi = \pi/2 \pm \arcsin(A/B)$ или $\pm \arcsin(C/D)$

Если главная ось эллипса находится в I и III квадранте, то значение ϕ должно находиться в диапазоне (0~ π /2) или (3 π /2~2 π). Если главная ось в II и IV квадранте, то значение ϕ должно находиться в диапазоне (π /2~ π) или (π ~3 π /2).

Пример 7. Запуск по видеосигналу

Проверка схемы формирования изображения в проигрывателе DVD. Используйте запуск по видеосигналу для получения стабильного изображения.

Запуск по полям видеосигнала.

Для запуска от синхроимпульса поля видеосигнала выполните следующие действия.

- 1. Нажмите кнопку MENU в зоне "TRIGGER" для вызова на экран меню запуска.
- 2. Нажмите Mode для выбора режима Video.
- 3. Нажмите **Source** для выбора CH1 в качестве источника сигнала.
- 4 Нажмите **Polarity** для выбора
- 5 Нажмите **Sync** для выбора Odd Field (нечетные) или Even Field (четные).
- 6 Вращением регулятора <u>©LEVEL</u> добейтесь устойчивого изображения.
- 7 Вращением горизонтального регулятора масштаба ^{SCALE} добейтесь полного отображения сигнала на экране.

Рисунок 3-7

Осциллографы серии DS1000 позволяют производить запуск по синхроимпульсу нечетного или четного поля. Необходимо только выбрать Odd Field (нечетные поля) или Even Field (четные поля) (см. п.5 выше). Это позволяет избежать смешения изображений полей, возникающего при запуске по каждому синхроимпульсу поля.

Запуск по синхроимпульсу строки

- 1. Нажмите кнопку MENU в зоне "TRIGGER" для вызова на экран меню запуска.
- 2. Нажмите **Mode** для выбора режима Video.
- 3. Нажмите **Source** для выбора CH1 как источника сигнала.
- 4. Нажмите **Polarity** для выбора <u>U</u>.
- 5. Нажмите **Sync** для выбора Line Num.
- Вращением многофункционального регулятора (♥) выберите номер интересующей строки.
- 7. Вращением горизонтального регулятора масштаба ^{©SCALE} добейтесь полного отображения сигнала строки на экране.

Рисунок 3-8

Пример 8. Курсорные измерения БПФ

При режиме FFT возможно измерение амплитуды по шкале Vrms ($B_{3\varphi\varphi}$) или dBVrms (дБ $B_{3\varphi\varphi}$) и измерение частоты (Гц).

Выполните следующие действия:

- 1. Нажмите Cursor → Manual.
- 2. Нажмите Туре для выбора Х или Ү.
- 3. Нажмите Source для выбора FFT.
- 4. Вращением многофункционального регулятора (💙) установите

интересующее положение курсоров.

Пример 9. Допусковая проверка Pass/Fail

Функция допусковой проверки Pass/Fail (ГОДЕН/НЕГОДЕН) является одной из расширяющих возможности специальных функций и базовой для осциллографов серии DS5000. При запуске этой функции осциллограф автоматически сравнивает входной сигнал с заранее созданной маской формы сигнала. Если форма сигнала выходит за рамки маски, то результат проверки – Fail (НЕГОДЕН), в противном случае тест пройден. Если осциллограф оснащен встроенным модулем с выходом Pass/Fail, то при неудачной проверке на этом выходе появится импульсный сигнал (выход с открытым коллектором).

Выполните следующие действия:

- 1. Нажмите Utility → Pass/Fail
- 2. Нажмите **Enable Test** и выберите ON для вызова меню проверки.
- Нажмите Mask Setting → Load для загрузки ранее сохраненной маски; или выберите вертикальный и горизонтальный допуски, нажав для этого соответственно Y Mask и X Mask, а затем нажмите Create Mask для создания новой маски.
- 4. Нажмите Output для выбора проверяемого условия Pass или Fail.
- 5. Нажмите **Operate** для запуска проверки.

Рисунок 3-11

Раздел 4. Сообщения и неисправности

Сообщения на экране осциллографа

Trigger level at limit (Предел уровня запуска): сообщает о достижении предельного уровня запуска при вращении регулятора <a>StateLEVEL.

Trigger position at limit (Предел положения запуска): сообщает о достижении предельного значения положения запуска при вращении горизонтального регулятора OPOSITION.

Volts/Div at limit (Предел В/ДЕЛ.): сообщает о достижении предельного значения вертикального масштаба Volts/Div при вращении вертикального регулятора ©SCALE .

Vertical position at limit (Предел положения по вертикали): сообщает о достижении предельного значения положения по вертикали осциллограммы сигнала при вращении вертикального регулятора OPOSITION.

No active cursor (Курсор неактивен): сообщает о том, что Вы не установили источник сигнала для курсора при использовании режима слежения курсорных измерений.

Delayed scale at limit (Предел масштаба увеличения фрагмента): сообщает о достижении предельного значения горизонтального масштаба при вращении регулятора QSCALE в режиме увеличения фрагмента.

Delay position at limit (Предел положения увеличенного фрагмента): сообщает о достижении предельного положения при вращении горизонтального регулятора OPOSITION в режиме увеличения фрагмента.

Function not available (Функция недоступна): сообщает о том, что данная функция не действует при текущей настройке или текущая настройка не требует никаких регулировок.

Sampling at limit (Предел частоты выборки): сообщает о достижении предельного значения частоты выборки в режиме Х-Ү.

Time/div at limit (Предел ВРЕМЯ/ДЕЛ.): сообщает о достижении предельного значения горизонтального масштаба.

Memory position at limit (Предел памяти): сообщает о достижении границы памяти.

Save finished (Сохранение завершено): сообщает о завершении процесса сохранения.

The storage is empty (Память пуста): сообщает о том, что выбранный сегмент памяти не содержит сохраненных осциллограмм или настроек.

Measurement already selected (Параметр измерения уже выбран): сообщает о том, что выбираемый Вами параметр измерения уже отображен на экране.

Dot display only (Отображение только точками): сообщает о том, что при текущих настройках Вы можете использовать только точечный тип отображения осциллограмм на экране.

Failed operation on files (Неудачная операция с файлами): сообщает о неудачной операции с файлами в памяти устройства USB.

Failed print (Печать невыполнена): сообщает о неудачной печати.

Files are covered (Заменить файл?): сообщает о том, что существующий файл будут заменен новым при сохранении осциллограммы.

A newer firmware detected, update? (Обнаружено более новое программное обеспечение, установить?): сообщает о возможности обновления прошивки программ осциллографа.

Устранение неисправностей

1. Если после включения питания осциллографа экран остается темным, пожалуйста, проверьте следующее:

- (1) проверьте подключение сетевого шнура;
- (2) убедитесь, что включатель питания находится в положении "ВКЛЮЧЕНО";
- (3) после предыдущих проверок, выключите и снова включите осциллограф;
- (4) если неисправность осталась, пожалуйста, свяжитесь с **RIGOL** и попросите о помощи.

2. Если после регистрации сигнала осциллограмма не появилась на экране, пожалуйста, проверьте следующее:

- (1) проверьте настройки осциллографа;
- (2) проверьте надежность подключения пробника к осциллографу;
- (3) проверьте контакт пробника с исследуемым источником сигнала;
- (4) проверьте наличие сигнала в исследуемой точке;
- (5) повторите регистрацию.

3. Результат измерения в 10 раз больше или меньше ожидаемой величины.

Проверьте соответствие ослабления пробника настройке ослабления для канала, к которому подключен пробник.

4. Если осциллограф отображает форму сигнала нестабильно, пожалуйста, проверьте следующее:

- (1) проверьте соответствие установки источника запуска осциллографа предполагаемому Вами источнику;
- (2) проверьте режим запуска: для обычных сигналов нужно использовать "Edge", а для видеосигналов "Video";
- (3) выберите в меню запуска **Set Up** → **Coupling** → LF Reject или HF Reject, чтобы отфильтровать шум, мешающий запуску.

5. После нажатия кнопки <u>RUN/STOP</u> на экране осциллограмма отсутствует.

Возможно, в меню запуска установлен режим запуска развертки "Normal" или "Single", и уровень запуска не попадает в диапазон сигнала. В этом случае Вам необходимо правильно установить уровень запуска вращением регулятора (Description of the sanger of t

6. При регистрации после установки режима усреднения или после включения режима послесвечения экрана осциллограмма обновляется медленно.

Это нормально при этих установках.

7. Осциллограмма сигнала в виде «лесенки».

- (1) Возможно, выбрана слишком медленная развертка. Для улучшения вида осциллограммы увеличьте скорость развертки вращением регулятора горизонтального масштаба [©]SCALE.
- (2) Возможно, в меню настроек экрана выбран режим "Vectors". Выберите режим "Dots" для улучшения изображения сигнала.
Раздел 6. Приложения

Приложение А. Характеристики

Для всех моделей серии DS1000 характеристики приводятся для пробников с переключателем ослабления в положении 10Х, если не указано иначе. Соответствие приведенным характеристикам обеспечивается при изначальном выполнении двух условий:

- 1 прибор предварительно должен непрерывно работать в течение 30 минут при указанном в характеристиках диапазоне рабочих температур.
- 2 выполнение процедуры автокалибровки меню "Utility" при каждом изменении температуры окружающей среды более чем на 5°С.

Гарантируются только характеристики, которые не помечены как "типовые".

Регистрация			
Режим	режим реального времени	режим	эквивалентной
регистрации		выборки	
Максимальная	1000Мвыб/с	50Гвыб/с	
частота выборки			
Усреднение	по N регистрациям, одноврем	иенно для все	ех каналов,
	N выбирается из ряда 2, 4, 8,	16, 32, 64, 1	28 или 256

Входы				
Связь входа		открытый вход (DC), закрытый вход (AC), замыкание		
		на землю (GND)		
Импеданс в	хода	1МОм±2%, параллельно с 15пФ±3пФ		
Учет о	слабления	1X, 10X, 100X, 1000X		
пробника				
Mauauuaauuaa		300В _{пик} (постоянного или переменного тока, входной		
Максимальное		импеданс 1МОм)		
входное напряжение		5В _{пик} (постоянного или переменного тока)**		
Время	задержки	500пс		
между	каналами			
(типовое)				

По горизонтали	
Диапазон частоты	1выб/с – 2000Мвыб/с (режим реального времени),
выборки	50Гвыб/с (режим эквивалентной выборки)
Интерполяция	Sin(x)/x
осциллограммы	
Длина записи	10К для одноканальной регистрации,
	5К для каждого канала при двухканальной
	регистрации.
Диапазон	1 нс/ДЕЛ. – 50с/ДЕЛ., DS1302CA
коэффициентов	2 нс/ДЕЛ. – 50с/ДЕЛ., DS1202CA, DS1102CA
вертикального	5 нс/ДЕЛ. – 50с/ДЕЛ., DS1062CA
отклонения	шаг 1-2-5
ВРЕМЯ/ДЕЛ.	
Погрешность	±0.01% (для любого интервала времени больше 1мс)
времени выборки и	
времени задержки	
Погрешность	однократный сигнал:
измерения	±(время выборки + 10 ⁻⁴ × измеренное значение + 0.6нс)
интервалов	усреднение >16:
времени	±(время выборки + 10 ⁻⁴ × измеренное значение + 0.4нс)
(полная полоса	
пропускания)	

По вертикали	
Аналогово-цифровые	8 бит, отдельный преобразователь для каждого
преобразователи	канала*
Диапазон	2мВ/ДЕЛ. – 5В/ДЕЛ. на входе ВNC
коэффициентов В/ДЕЛ.	
Диапазон смещения	±40В (200мВ/ДЕЛ. – 5В/ДЕЛ.),
	±0,8В (2мВ/ДЕЛ. – 100мВ/ДЕЛ.)
Полоса пропускания для	60МГц (DS1062CA)
периодического	100МГц (DS1102CA)
аналогового сигнала	200МГц (DS1202CA)
	300МГц (DS1302CA)

	COME:: (DC10C2CA)
Полоса пропускания для	
однократного сигнала	100МГц (DS1102CA)
	200МГц (DS1202CA)
	300МГц (DS1302CA)
Возможность	20МГц
ограничения полосы	
пропускания аналогового	
сигнала (типовое)	
Низкочастотный предел	≤5Гц (на входе BNC)
для закрытого входа	
(уровень -ЗдБ)	
Время нарастания на	<1.1нс (полоса пропускания 300МГц),
входе BNC, (типовое)	<1.7нс (полоса пропускания 200МГц),
	<3.5нс (полоса пропускания 100МГц),
	<5.8нс (полоса пропускания 60МГц)
Погрешность	±4% (2мВ/ДЕЛ5мВ/ДЕЛ., при однократной
коэффициента усиления	регистрации или режиме усреднения);
для постоянного тока	±3% (10мВ/ДЕЛ5В/ДЕЛ., при однократной
	регистрации или режиме усреднения)
Погрешность измерения	усреднение ≥16 осциллограмм с вертикальным
напряжения для	положением в нуле:
постоянного тока,	±(4% х измеренное значение+0.1дел.+1мВ) при
режим усреднения	
	±(3% х измеренное значение+0.1дел.+1мВ) при
	10мв/дел. – 5в/дел.
	усреднение ≥16 осциллограмм с вертикальным
	положением отличным от нуля:
	±[(3% х (измеренное значение + верт. положение
)+1% х (верт. положение)+0.2дел.]
	дополнительно +2мВ при 2мВ/ДЕЛ. – 200мВ/ДЕЛ.
	дополнительно +50мВ при 200мВ/ДЕЛ. – 5В/ДЕЛ.
Погрешность измерения	дельта напряжения для любых двух усреднений из
дельты напряжения	16 осциллограмм полученных при одинаковых
(режим усреднения)	настройках и внешних условиях:
	±(3% х полученное значение + 0.05дел.)

Запуск				
	0 1 леп – 1 0			
Пистерезис уровня запуска	0.1дел. – 1.0 ЕVТ			
диапазон уровня запуска		±1.0D		
	EXI/5	±8B		
	внутренний	±5 делений от центра экрана		
Погрешность уровня	EXT	±(6% от уст. значения + 40мВ)		
запуска (типовая) для	EXT/5	±(6% от уст. значения + 200мВ)		
сигнала с фронтом и	внутренний	±(0.3дел.×В/ДЕЛ.) (при уровне		
спадом ≥20нс		запуска ±4дел. от центра экрана)		
	режим регис	трации:		
	отрицательн	ая задержка пуска (262144/(частота		
Смещение момента запуска	выборки));			
(задержка запуска)	положительн	ая задержка пуска 1с		
	режим просм	режим просмотра: 6дел. до запуска, 6дел. после		
	запуска	запуска		
Диапазон регулировки	100нс – 1.5с			
времени блокировки	1			
запуска				
Автоматическая установка	действует дл	я входного сигнала с частотой ≥50Гц		
уровня запуска 50%)			
(типовое)				
Запуск по фронту				
Условия запуска	по фронту; п	ю спаду;		
	по фронту и по спаду			
Запуск по длительности	импульса			
Условия запуска (оложительной полярности импульса		
, ([>, <, =) для от	рицательной полярности импульса		
Диапазон установок 2	20нс – 10с			
длительности импульса				
Запуск по видеосигналу	1			
Поддерживаемые	NTSC, PAL и S	SECAM;		
стандарты и число строк	диапазон строк 1-525 (NTSC) и 1-625 (PAL/SECAM)			

Запуск по скорости нарастания								
Условия за	пуска	(>, <,	=) для на	раста	ающего фронта		
		(>, <,	=) для спа	адаю	щего фронта		
Диапазон	установ	ок 2	0нс -	- 10c				
длительное	сти перепад	а						
Поочеред	Поочередный запуск							
Режимы	запуска	для	по	фронту,	ПО	длительности	импульса,	по
канала СН1		вид	еосигналу	, по (скорости нараст	ания		
Режимы	запуска	для	по	фронту,	ПО	длительности	импульса,	по
канала СН2		вид	еосигналу	, ПО (скорости нараст	ания		

Измерения		
Курсорные	ручной режим	интервал напряжения между курсорами
измерения		(ΔV)
		интервал времени между курсорами (ΔT)
		частота эквивалентная ΔТ (1/ΔТ)
	режим	напряжение в точке осциллограммы
	слежения	время в точке осциллограммы
	режим	курсоры иллюстрируют автоматическое
	автоизмерения	измерение
Автоматическое	Vpp, Vmax, Vmin,	Vavg, Vamp, Vrms, Vtop, Vbase, Overshoot,
измерение	Preshoot, Freq, P	eriod, Rise Time, Fall Time, +Width, -Width,
	+Duty, -Duty, D	elay1→2 ƒ, Delay1→2 Ѣ (значение см.
	п. "Автоматическ	ое измерение")

Общие характеристики

Дисплей	
Тип дисплея	ТFT жидкокристаллический,
	диагональ 5.7 дюйма (140мм)
Разрешение	320 (по горизонтали)×234 (по вертикали)
	пикселов, RGB
Цветность	64к цветов
Контрастность (типовая)	150:1
Интенсивность задней	300 кд/м ²
подсветки (типовая)	

Выход для компенсации пробника			
Выходное на	пряжение	амплитуда 3В на нагрузке ≥1МОм	
(типовое)			
Частота (типовая)		1кГц	

Питание	
Источник питания	~100 - 240В _{эфф} , 45 - 440Гц, КАТ II
Потребляемая	не более 50ВА
мощность	
Плавкий	2А, 250В, тип Т
предохранитель	

Условия внешней среды		
Температура	рабочая 10°С ~ 40°С	
	нерабочая -20°С ~ +60°С	
Охлаждение	принудительное, вентилятор	
Относительная	≤90% при температуре ≤+35°С	
влажность	≤60% при температуре +35°С ~ +40°С	
Высота	рабочая не более 3'000м	
над уровнем моря	нерабочая не более 15'000м	

Механические		
Габаритные	длина	303мм
размеры	ширина	154мм
	высота	133мм
Масса	без упаковки	2.4кг
	с упаковкой	3.8кг

IP Degree

IP2X

Межповерочный интервал

Рекомендуемый межповерочный интервал – один год

* При частоте выборки 400Мвыб/с возможно использование только одного канала.